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1 Significance of the Problem

It has been long recognized that airborne sound transmission in the human auditory system
(through the ear canal to the middle ear and to the inner ear) is not the only physical mech-
anism responsible for hearing. The other mechanisms (generally termed “bone conduction”,
although not only the bone may be involved) include vibrations of the ear canal walls, direct
mechanical excitation of the ossicular system and of the cochlea through bone and soft tissue
vibrations, excitation of the middle ear by waves passing through the nose cavity, and similar
phenomena. While those mechanisms may be beneficial in the context of hearing aids, in the
noisy environment they constitute a significant risk, which may be difficult to mitigate by means
of protective devices, typically designed to reduce the airborne energy transfer. Numerical sim-
ulation of energy transfer processes may be, therefore, of significant value in understanding the
risks and preventing them by an appropriate design of protective devices, especially considering
the fact that many relevant physical quantities are difficult and sometimes impossible to mea-
sure experimentally (particularly in vivo), and physiological measurements (such as hearing
thresholds) may be biased by individual subjective perception differences.

2 Project Objectives

The objectives of this project were:

to develop a formulation capable of describing energy flow in a human head subject to an
incident acoustic wave propagating in the surrounding air, and construct a corresponding
accurate, error controlled, and efficient numerical simulation tool,

and, using the developed simulation tool,

to investigate and assess quantitatively various mechanisms of energy transfer to the
inner ear due to various sound-wave conduction paths.

3 Overview of the approach

The present project consisted of three main parts:

development of a fast surface integral equation solver with FFT-based matrix compres-
sion,

development of an anatomically faithful geometry model

- containing all essential anatomical elements needed to study energy transfer to the
cochlea region, and

- fulfilling all the requirements ensuring its usability in numerical simulations.

analysis employing the developed geometry and the new solver which had as a goal
providing information on energy flow to the inner ear area.
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A very unique and non-trivial algorithmic challenge of constructing an accurate and efficient
solution procedure for the problem of a human body/human head surrounded by air and
exposed to the incoming acoustic wave is the high contrast nature of the problem. Due to the
large (of the order of 103) density ratio of human versus air tissues there is a large impedance
mismatch at the air-human body interface and only a small fraction of the incoming energy is
transferred into the body interior. As the result, a very high accuracy in evaluating pressure
and velocity fields at the air-human body interface is required in order to reliably compute the
corresponding fields inside the human interior and, in particular, in the inner ear.

In our previous analysis [1, 2] we developed a novel, two-stage approach based on a volu-
metric integral equation formulation for objects of inhomogeneous material properties. That
enhanced approach required introducing surface distributions of the pressure and velocity fields
associated with the external high-contrast interfaces.

However, in the course of subsequent work, cases of slow convergence which lead to a
reduced accuracy (e.g., for geometries containing internal high-contrast interfaces) were en-
countered/identified.

Therefore a part of our current effort was devoted to the development of a full surface
integral equation formulation for a problem involving multiple piecewise-homogeneous material
regions characterized by high-contrast interfaces. The constructed solver incorporates non-
lossy, error controlled, FFT-based matrix compression which, due to its N logN (whereN is the
number of unknowns) memory and complexity performance, allows handling large anatomically
realistic models without compromising the accuracy. Using the developed solver we achieved
numerically reliable results when describing wave propagation in multi-region topologies with
individual piecewise homogeneous sub-regions.

The developed approach/solver constitutes a significant addition with respect to both our
previous formulation, as well as to other competitive methods. It also establishes the basis
towards a combined surface-volume formulation which,

- would integrate the developed volumetric and surface integral equation solvers, and,

- would be particularly applicable to topologies consisting of adjacent, high complexity,
strongly inhomogeneous, but relatively low contrast regions (e.g., bone, brain, ligament
tissues) embedded in regions approximately homogeneous but characterized by high-
contrast (e.g. skin tissue exposed to air).

Development of such a formulation we have already initiated and to pursue its continuation
would be of significant interest and value.

Another ingredient critical in numerical simulations is a proper surface representation of
the geometry of interest. Therefore significant fraction of the effort was devoted to the con-
struction of a geometry model which would be anatomically faithful, would contain all the
relevant components controlling the energy flow through the human head and, at the same
time, would meet the stringent requirements of numerical simulations. Principal components
of the developed human head model include:

- the outer surface of the skin surrounding the skull and containing

- the outer ear represented by its exterior surface,
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- the surface of the auditory canal,

- the tympanic membrane modeled as a finite-thickness surface,

- the skull including the temporal bone and boundaries of the inner ear cavity:

- the cochlea with oval and round windows,

- the vestibule,

- the semi-circular canals.

- the middle ear cavity, consisting of the system of ossicles and supporting structures,

The third main part of our effort comprised extensive numerical analysis employing the
developed formulation and the geometry. The main results can be summarized as follows:

- Distributions of pressure and velocity fields depend in a very nontrivial way on the
object geometry, hence the behavior of the resulting energy flux into the inner ear may
be difficult to predict without realistic simulations.

- Resonances associated with the outer ear canal emanate energy to the surrounding tissues
and provide an important contribution to the energy flux reaching the inner ear by means
of non-airborne sound transmission.

Comparison of the results for various head geometries shows that at relatively high
frequencies (above about 2 kHz, corresponding the wavelengths . 15 cm) a large part
of the non-air-borne energy transfer to the inner ear is due to the resonant behavior of
the wave in the outer ear canals. This contribution to the energy flux can be significantly
reduced by means of ear-plugs. However, as the frequency decreases, the contribution of
the energy penetrating through the surfaces of the head and the skull becomes dominant;
and this energy-transfer mechanism can only be suppressed by protecting the entire
surface of the head.

- The skull affects the local energy flux distribution to the inner ear, possibly through
reflections from the interfaces between the bone and the soft tissue.

The continuation/completion of the above described approach may constitute a solid basis
for investigations of the effectiveness of air- and bone-conduction noise-protection devices, as
well as the effectiveness of various hearing-enhancement aids.

4 Publications

• (1) ”Formulation and applications of an integral-equation approach for solving scatter-
ing problems involving an object consisting of a set of piecewise homogeneous material
regions”

J. Acoust. Soc. Am. Volume 130, Issue 4, pp. 2435-2435 (2011); Elizabeth Bleszynski,
Marek Bleszynski, and Thomas Jaroszewicz
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• (2) ”Numerical simulation of acoustic wave interaction with inhomogeneous elastic bodies
containing homogeneous inclusions”

J. Acoust. Soc. Am. Volume 129, Issue 4, pp. 2382-2382 (2011); Elizabeth Bleszynski,
Marek Bleszynski, and Thomas Jaroszewicz

• (3) ”Formulation and selected applications of a regularized elastodynamics integral equa-
tion approach to large scale scattering problems involving inhomogeneous objects” J.
Acoust. Soc. Am. Volume 131, Issue 4, pp. 3510-3510 (2012); Elizabeth Bleszynski,
Marek Bleszynski, and Thomas Jaroszewicz

• (4) ”Reduction of Volume Integrals to Nonsingular Surface Integrals for Matrix Elements
of Tensor and Vector Green Functions of Maxwell Equations”

IEEE Transactions on Antennas and Propagation, vol. 61, No. 7, July 2013; Elizabeth
Bleszynski, Marek Bleszynski, and Thomas Jaroszewicz

• (5) “Integral-equation solver for investigation of acoustic energy flow in the human head”

(to be submitted to JASA); Elizabeth Bleszynski, Marek Bleszynski, and Thomas Jaroszewicz

• (6) ”Formulation and Applications of the First and the Second Kind Elastodynamics
Integral Equations ”

(to be submitted to JASA); Elizabeth Bleszynski, Marek Bleszynski, and Thomas Jaroszewicz

5 Summary of the results

We briefly summarize here the areas of our work and our main results:

5.1 Development of integral-equation formulation and solution algorithm

We assessed merits of various forms of integral equations employing different volumetric
and surface representations in their ability to model problems of our interest: propagation
of an elasto-acoustic wave through the human head.

We selected and constructed formulations based on first and second kind surface integral
equations for geometries composed of multiple, homogeneous regions:

- in acoustics, the problem is formulated for two unknown scalar fields,

p(r) and q(r) ≡
1

ρ(r)

∂p(r)

∂n(r)
,

where p is the pressure on an interface, ρ the medium density, and n the normal to
the interface,

- in elastodynamics, for two unknown vector fields,

u(r) and t(r) ,

i.e., for the displacement and traction on the interfaces.
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An important element of the formulation enabling its efficient implementation was the
reduction, by means of suitable integration by parts, of singular terms appearing in
matrix elements arising in surface integral equations to weakly singular integrals. The
paper describing the approach has been submitted and accepted for publication (see
Ref. []).

We developed a parallel solver based on the selected formulation. The solver uses an
FFT-based error-controlled matrix compression which

- is suitable to problems involving highly sub-wavelength discretization (such as the
middle and inner ear cavity problem),

- is characterized by N logN memory and complexity performance (where N is the
number of unknowns), and hence allows handling large anatomically realistic models
without compromising the accuracy.

We initiated development of a combined surface-volume formulation suitable for geome-
tries consisting of adjacent, high complexity, strongly inhomogeneous, but relatively low
contrast regions (e.g., bone, brain, ligament tissues) embedded in or adjacent to regions
approximately homogeneous but characterized by high-contrast (e.g. skin tissue exposed
to air, lining of nasal cavity, etc.). As the first step we developed discretization methods
for equations coupling surface and volume variables on interfaces and in inhomogeneous
domains.

Completion of this approach may lead to the state of the art numerical simulation tool capable
of accurate determination of acoustic energy transfer and its deposition in geometrically very
intricate and most vulnerable regions of a human head.

5.2 Geometry construction

Availability of a high quality geometry model of a human head of is critical importance
in obtaining reliable results. By a high quality model we understand:

- a model anatomically faithful, with the proper choice of relevant organs/tissues and,
at the same time,

- a model with geometry discretization complying with the strict requirements of the
numerical tool.

Therefore, geometry construction constituted a very intense part of the project. Our
geometry model has been built by using several publicly available sources and required
considerable work in matching the components. In its present form it contains essential
features needed to study energy flow/transfer to the human head and to the cochlea
region.

The principal components of our human head model are:

- the outer surface of the skin surrounding the skull and containing
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– the outer ear represented by its exterior surface,

– the surface of the auditory canal, and

– the tympanic membrane modeled as a finite-thickness surface,

- the skull, described by surfaces of the bones and containing

– the required boundaries of the middle ear cavity,

– the boundaries of the inner ear cavity (the cochlea, the vestibule, and the semi-
circular canals),

- the middle ear cavity, consisting of the system of ossicles and supporting structures,

We stress that there are several imperative requirement in constructing a geometry repre-
sentation suitable for numerical simulations which make it a tedious and time consuming
process. They include:

- nearly uniform discretization with local variations reproducing small geometry de-
tails,

- good quality (aspect ratio) triangular mesh,

- closed surfaces with no intersecting or overlapping patches and,

- grid connectivity on joints between patches.

Below we show some representative examples of the head geometry used in our simula-
tions.

Please zoom the pdf file when you are viewing the figures below to see better the geometry
details and the mesh quality.
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Figure 1: The discretized skin geometry.

Figure 2: A detail of the discretized skin geometry viewed from the inside - the outer meatus.
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Figure 3: A view of the skull geometry modeled as a closed surface with the ear canal and the
ossicles in the middle ear cavity (the eardrum was removed for a better view).

Figure 4: A close view at the outer ear canal, the middle ear cavity and the ossicles (the
eardrum was removed for a better view).
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Figure 5: A view of the skull geometry modeled as a closed surface from the inside - note the
temporal bone and the inner meatus.

Figure 6: A detail of the skull surface: the inner meatus, cochlea, semicircular canals, the
middle ear cavity). The triangulation used for this particular component of the geometry
resulted in about 280, 000 unknowns.
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Figure 7: Another detail of the skull surface: the middle ear cavity with the attic, the semi-
circular canals, and the ossicles (with the eardrum removed for a better view).

Figure 8: A part of the discretized head geometry model in the vicinity of the left ear, shown as
a coronal section seen from the back. The dark surfaces visible in the cross-section are interior
sides of the boundaries of the bone and the outer boundary of the head (the skin). The space
between the skin and skull, and the interior of the skull are filled with soft tissue. Since the
clipping plane intersects the outer ear canal, its interior is partly exposed.
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Although the degree of detail and complexity of our model allows us to carry out rea-
sonably realistic numerical simulations, it would be beneficial to further enhance the
geometry model by including, in particular, such additional elements as

- the nasal cavity,

- the brain tissue, the latter characterized by nontrivial elasto-viscous properties.

Such components should be carefully and in as much as possible complete manner taken
into account, as they may play a significant role in controlling the distribution of the
energy flow into the inner ear and therefore further improve fidelity of the simulations.

An important and very valuable aspect of the created geometry is that, due to its perfect
connectivity, the shapes and sizes of individual organs can be locally deformed (rescaled) leading
to different head geometry realizations. Hence, sensitivity of the energy flow and energy flux
distribution on the geometrical details of the human head can be studied.

5.3 Numerical simulations and assessment of the relative importance of
the bone conduction mechanism

5.3.1 Overview

As we mentioned in the Introduction, the acoustic and elastic wave propagation problems we
are investigating involve penetration of waves from a low-density medium (air) to the interior
of an object consisting of high-density tissues.

This category of problems have been relatively little explored in the past, either theoreti-
cally or in applications. Most of the theoretical work concentrated on essentially single-region
problems involving hard- or soft-surface or impedance boundary conditions, while the transmis-
sion boundary problems have been receiving much less attention. Similarly, typical applications
were either (1) dealing with much lower contrasts than in our case (for instance, in marine
applications, rock- or metal-to-water density ratios not exceeding about 10, compared to our
ratios ≥ 1000), or (2) considering wave sources embedded in the dense medium rather than in
the surrounding air, as is the case in seismic or vibration mechanics problems.

In view of this status of the current research, our problem required a considerable effort to
develop an insight into the mechanisms of wave penetration through high-contrast interfaces
and its propagation in the dense medium. In particular, our extensive numerical simulations
allowed us to to establish a general picture of energy flow inside the human head model and
identify the main mechanisms controlling its distribution (including reflection from and trans-
mission through high contrast interfaces, as well as resonances in air cavities); we were also
able to obtain quantitative estimates of the amount of energy (relative to the incident energy
flux density) reaching the inner ear by means of bone- and soft-tissue conduction. We stress
here that, although the overall level of the energy flux entering the cochlear cavity is rela-
tively insensitive to the geometry and material parameters variations, its detailed distribution
and even orientation do depend on the geometry in a nontrivial way and would have been
impossible to predict without the actual computations.
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The main results of the simulations are presented below. Additional results are contained
in the attached draft of a paper (Appendix B).

5.3.2 Energy flux as a measure of the tissue conduction effects

As a quantitative measure of the amount of bone-conducted acoustic energy reaching the inner
ear we compute the integral of the absolute value of the average energy flux density F over the
surface S of the cochlear cavity,

ΦS :=
1

|S|

∫

S

d2r |F (r)| , F (r) :=
ρ0

k0 ρ(r)
Im

{
p(r) ∂n p

∗(r)
}
, (5.1)

where |S| is the area of the surface.

5.3.3 Bone-conducted energy flow into inner ear in the presence and absence of
the external ear canal

We present here results for the energy flow distribution in two models, both including the full
skull and middle/inner ear cavity, but differing in the presence or absence of the outer ear
canal. The latter model can be considered a realization of a perfect ear-plug, with which the
outer auditory canal is effectively closed.

In both models we assumes typical approximate values of the relative densities and the
refractive indices, ρ/ρ0 = 1000 and n = 0.2 for the soft tissues, and ρ/ρ0 = 2000 and n = 0.4
for the bone. The model is being subject to a pressure plane wave of unit amplitude, incident
from the left side of the head. In most of the examples we carried out computations in a wide
range of wavelengths, from λ = 3cm (about 10 kHz) to λ = 80 cm (about 400Hz); λ = 2π/k0
is always the wavelengths in the air.

We note that in these simulations we excluded the impedance-matching mechanism of
the middle ear; hence, the entire energy arriving at the inner ear has propagated exclusively
through the bone and other tissues, and not through the air-conduction pathway.

Distribution of the energy flux in the temporal bone area for λ = 5cm is visualized in
Fig. 9(a). The flux density has large values on the walls of the outer ear canal and the
energy evidently emanates from there to the surrounding tissues. In fact, by comparing this
distribution with that for the alternative model we find that the presence of the outer ear canal
increases the energy flux through the inner ear by about a factor of 10.

An interesting feature is that in different parts of the canal the energy flows from the air
into the tissue or in the opposite direction. Moreover, we found that the energy flow changes
direction several times with the changing wavelength in the considered range. Such a behavior
is characteristic of a standing acoustic wave being formed in the ear canal [3].

A more systematic and quantitative comparison of the models is provided in Fig. 9(b)
which shows the average relative energy flux through the cochlea (Eq. (5.1)) as a function of
the wavelength of the incident wave. At larger wavelengths the presence of the outer auditory
canal increases the energy flux by about a factor of two. At smaller wavelengths the effect is
larger and exhibits a resonant behavior, manifesting itself by the two peaks at λ ≈ 5 cm and
λ ≈ 15 cm.
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(a) (b)

Figure 9: (a) Distribution of the energy flux density on the material interfaces in the vicinity of
the left temporal bone, for λ = 5cm. Positive (red) and negative (blue) flux indicates energy
flowing into and out of the bone. (b) The average energy flux density through the surface of
the cochlear cavity (relative to the incident wave flux density), as a function of the wavelength,
for the model with the skull and soft tissues.

5.3.4 The role of acoustic bone conduction vs. soft tissue conduction

In order to assess the significance of bone conduction vs. soft-tissue conduction, we also com-
puted the amount of energy flowing through the cochlea in a model of the human head filled
entirely with a homogeneous material, without the skull structure. In this comparison we con-
sidered, as before, two models of the outer head surface: without outer ear canals (i.e., with
“perfect ear-plugs”) and with ear canals.

We first consider the model without the outer ear canals, in which the entire head is filled
with the soft tissue (ρ/ρ0 = 1000, n = 0.2). We solve the transmission problems with the
outer head surface (the “skin”) and a part of the middle- and inner-ear ear cavity, including
the cochlear cavity. The presence of the latter surface does not affect the solution itself, but
allows us to compute the average energy flux

ΦS :=
1

|S|

∫

S

d2r |F (r)| , F (r) :=
ρ0

k0 ρ(r)
Im

{
p(r) ∂n p

∗(r)
}
, (5.2)

through the same part S of the cochlea cavity surface as used before. (Fig. 10).

13



(a) (b)

Figure 10: (a) A part of the discretized head geometry model in the vicinity of the left ear,
shown as a coronal section seen from the back. The dark surfaces visible in the cross-section
are interior sides of the boundaries of the bone and the outer boundary of the head (the skin).
The space between the skin and skull, and the interior of the skull are filled with soft tissue.
Since the clipping plane intersects the outer ear canal, its interior is partly exposed. (b) Part of
the discretized geometry containing the left middle- and inner-ear cavity, viewed from below.
The surface of the cochlear cavity is marked with S.

The results are shown in Fig. 11. It can be seen that the reduction of the flux due to the
presence of the skull is not large, of the order of 40%, and can be plausibly attributed to an
additional reflection of the sound wave from the interfaces between the skull and soft tissues.

Results for the analogous model with the outer ear canals are shown in Fig. 11(II). Again,
the flux densities in the the three models are not strongly affected by the presence of the skull.
In particular, the persistent resonant structure suggests that it is due rather to the shape of
the head itself than to the presence of the skull.
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Figure 11: The average relative energy flux density through the the cochlear cavity as a function
of the wavelength, for the model without the skull (b), compared to the result for the reference
model (a) with the skull. Plots (I) and (II) correspond to head surface models without and
with the outer ear canals.

The above comparisons of the absolute energy flux densities might seem to suggest the skull
does not play an important role in sound conduction. However, a more careful examination of
the spatial distribution and orientation of the energy flow shows this is not the case:

As an example of such an analysis, we plot in Figs. 12 flux distributions on the middle- and
inner-ear cavity at the wavelength 12 cm (in the resonance region), for the model with (a) and
without (b) the skull, but in the presence of the outer ear canals. We find that the direction of
the energy flow in these models is almost exactly reversed. This phenomenon (which is, in fact,
observed for most of the considered wavelengths) has to be attributed to interactions (perhaps
reflections) involving the skull bones.

(a) (b)

Figure 12: Energy flux density distributions on the left middle- and inner-ear cavity for wave-
length 12 cm computed for the full model (a) and for the model without the skull (b). The
cavity surface is viewed from the top; the canal directed to the left and up is the inner meatus.
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5.3.5 Summary of simulation results

In summary:

- We were able to establish a general picture of energy flow inside the head model and
identify the main non-air conduction mechanisms (in particular, transmission through
and reflection from high-contrast interfaces, as well as resonances in air cavities).

- We found that the overall magnitude of the energy flux reaching the inner ear is relatively
insensitive (within a factor x to the details of the geometry and even the presence or
absence of the skull (hence, sound conduction through soft tissues is also significant).

- However, the more detailed energy flux distribution and even the flux orientation proved
to be highly sensitive to the shape of the interfaces and to the difference of material
properties between the bone and the soft tissues. For instance, the presence of the skull
bones may reverse the direction of energy flux near the middle ear. Such effects may
be of importance in a more detailed analysis of the physiological effects of the energy
delivered to the inner ear.

- We established the frequency dependence of the energy reaching the inner ear through
the tissues. We found that at higher frequencies (few centimeter wavelengths in air) a
large part of that energy emanates from the outer ear canal, which supports a resonant
standing wave. However, at lower frequencies, the energy arriving at the inner ear is
dominated by transmission through a large area of the head surface.

- The last result suggests that the higher frequency noise components may by significantly
reduced by blocking the ear canals, but lower frequencies can only be suppressed by
protecting the entire surface of the head.

6 Open problems requiring possible future research

Although we believe we achieved a substantial degree of understanding of the sound propaga-
tion mechanisms in the human head, we also encountered challenges requiring further investi-
gation and offering, potentially, interesting and useful results. We list some of them:

- The role of large cavities in the head (in particular, the nasal cavity) should be inves-
tigated more thoroughly. Simulations should include possible shape variations (hence
possibly different resonant behavior) and should establish the significance of the cavities’
communication with the outer atmosphere.

- The skull bones are known to contain a multitude of small air cavities effectively forming
a porous bone structure; their presence may significantly affect wave scattering. Because
of their complexity and the lack of a reliable geometry model, the small cavities were not
included in our simulations. It might be possible to take them into account by means of
evaluating effective medium parameters, which would then probably exhibit substantial
dispersion.
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- The brain tissue is known to exhibit significant viscosity. Its effects in energy dissipation
should be investigated.

- We found that although the overall magnitude of the tissue-conducted energy reaching
the inner ear is relatively stable, the details of its spatial distribution strongly depend on
the head geometry. It would be of interest to investigate more thoroughly these effects
and their possible physiological role.

- In our simulations we found that high-contrast material layers (such as skull bones in
air) reflect most of the acoustic energy and transmit very little, even if they are thin
compared to the wavelength. This behavior suggests possible efficient noise protection
devices based on high-contrast layered structures. A detailed investigation conducted
with the developed simulation tools may proof to be of significant interest and usefulness.
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Appendices

A Details of the formulation

We provide here the main elements of the theory and some details of implementation of our
solver for elastodynamics problems. More information on the formulation of the acoustic
integral-equations and their implementation in our current solver are given in the draft of a
paper contained in Appendix B.

A.1 Formulation of elastodynamics integral equations and algorithm devel-
opment

In this Section we provide details on the elasto-dynamics integral equations for multi-domain
problems we constructed and partially implemented. We start with the Lamé equation for
the displacement in elastic medium subject to an external plane wave excitation F (r) The
displacement u(r) satisfies the equations

{(λ+ µ)∇r ⊗∇r + µ∇2
r + ρω2}u(r) = F (r), (A.1)

where λ and µ are the (position dependent) Lamé parameters, ρ is the medium density and ω
is the incident wave frequency.

The homogeneous medium Green function of the Lamé equation is the second rank sym-
metric tensor

G(R) =
1

µ
gS(R) Î +

1

µk2S
∇R ⊗∇R [gS(R)− gC(R)] , (A.2)

where

gC(R) =
e ikCR

4πR
,

gS(R) =
e ikSR

4πR
,

R = x− y .

(A.3)

The two wave-numbers,

kC =
ω

cC
, kS =

ω

cS
, (A.4)

are related to the longitudinal (compressional) and transverse (shear) wave speeds,

cC =

√
λ+ 2µ

ρ
, cS =

√
µ

ρ
. (A.5)

We consider a single material region Ω bounded by ∂Ω. By assuming that, inside Ω, the
displacement u(x) satisfies the Lamé equation (C.14), we may construct the following integral
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representation for the displacement field , which allows us to find its value at any point
x in Ω in terms of an integral of two fields, u(x) and t(x), on the region boundary:

u(x) =

∫

∂Ω

d2y
[
u(y) · Γ (x,y) + t(y) ·G(x− y)

]
. (A.6)

The symbols appearing in the integrand of the above integral representation are as follows:

• u(y) is the displacement vector field,

• t(y) is the traction vector field related to the stress tensor τ̂(y) as follows:

t(y) = n(y) · τ̂(y) ,

τ̂(y) = λ Î ∇y · u(y) + µ [∇y ⊗ u(y) + u(y)⊗∇y] ,

t(y) = λn(y) [∇y · u(y)] + µ {[n(y) · ∇y]u(y) +∇y [n(y) · u(y)]} ,

τ̂ij(y) = Cijkm ∂k um(y) ,

Cijkl = λ δijδkl + µ (δik δjl + δil δjk) ,

(A.7)

• G(x − y) is a second rank symmetric tensor, the Green function of the Lamé equation
given by (C.2),

• Γ (x,y) is a second rank non-symmetric tensor, related to the third rank stress tensor
Green function Σ(x) (symmetric in its first two indices)

Γ (x,y) = n(y) ·Σ(R) ,

Γij(x,y) =
∂

∂yq
Gip(x− y)Cjkpq nk(y) = {n(y) ·Σ(x− y)}ij ,

Γjk(x− y) = ni(y)Cijml ∂mGlk(R) ,

[Σ(R)]ijk = λ δij ∂mGmk(R) + µ [∂iGjk(R) + ∂j Gik(R)] = Cijml ∂mGlk(R) ,

Γjk(x,y) = ni(y)Σijk(R) ,

Φjk(x,y) = Σijk(R)ni(x) ,

Σ(R) = −Σ(−R) .

(A.8)

The tensor Green functions G(R) and Σ(R) satisfy the following equations:

[(λ+ µ)∇R ⊗∇R + µ∇2
R + ρω2]G(R) = − δ(R) Î ,

∇R ·Σ(R) + ρω2G(R) = − δ(R) Î ,

Σ(R) · ∇R + ρω2G(R)− λ (∇R · −∇R⊗)∇R ·G(R) = − δ(R) Î ,

∂i [Cijkl∂kGlm(R)] + ρω2Gjm(R) = − δjm δ(R) ,

∂i [Σijm(R)] + ρω2Gjm(R) = − δjm δ(R) ,

∇R ·G(R) =
k2C
ρω2

∇RgC(R) ,

(A.9)
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while τ̂(x) satisfies the equation

∇r · τ̂(r) + ρω2 u(r) = 0 ,
1
2 [∇r ⊗ u(r) + u(r)⊗∇r]−Dijkl τ̂kl(r) = 0 ,

(A.10)

with

Cijkl = λ δijδkl + µ (δik δjl + δil δjk) ,

Cijkl = Cjikl = Cijlk = Cklij.
(A.11)

is the fourth-rank elastic stiffness tensor and

Dijkl =
1

4µ

[
(δik δjl + δil δjk)−

2λ

3λ+ 2µ
δijδkl

]
. (A.12)

An additional useful relation is

Cijkl ∂k ul(x) ∂iGjm(R)−Cijkl ∂i uj(x) ∂kGlm(R) = 0 . (A.13)

A.2 Construction of coupled surface integral equations for displacement and
surface-traction fields in piecewise homogeneous media

Surface integral equations or boundary integral equations (BIEs) are applicable to piecewise
homogeneous materials, and provide solutions for the displacement and traction fields defined
on interfaces Smn separating different material regions Ωm (Fig. 13). One of these regions, Ω0,
is the unbounded background medium (air). Fields in the individual regions are described in
terms of the appropriate Green functions for elastic materials. The displacement and traction
fields are assumed to be continuous across the interfaces (i.e., to satisfy transmission boundary
conditions).

Figure 13: A schematic representation of regions Ω and interfaces S appearing in surface
integral equations .

As an example, we give below explicit expressions for two alternative systems of surface
integral equations describing for the above transmission problem. Such systems can be then
obtained in the following three steps:
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(a) using a conventional representation theorem (found, e.g., in Ref. [4]) for each material
region Ω for the displacement field in this region written in terms of the surface integrals
over ∂Ω with displacement and traction fields, u(r) and t(r) = n(r) · τ̂(r), playing the
role of surface sources,

u(x) =

∫

∂Ω

d2y
[
ΓT
m(x,y) · u(y) +GT

m(x,y) · t(y)
]
; (A.14)

(b) imposing continuity boundary conditions on the u(r) and t(r) values on each interface
(oriented surface) Smn separating the regions Ωm (on the negative side of the interface)
and Ωn (on its positive side),

um(r) = un(r) , (A.15a)

tm(r) = tn(r) ; (A.15b)

and

(c) writing two suitable equations following from the boundary conditions for each interface
Smn.

The choice of the integral equations is not unique. It is possible to form several different
sets of integral equations by taking different linear combinations of equations representing the
boundary conditions (A.15). While all such integral equations are theoretically equivalent, they
tend to differ in terms of accuracy, computational resources needed, and solution convergence.
We considered two representative choices marked below as (i) and (ii) and, after examining
them, we decided to choose the second, non-conventional, integral equation set.

The set (i) of integral equations are obtained by imposing, on each interface Smn, the
transmission conditions on the displacements only (Eq. (A.15b)), but expressing them by means
of the two representation formulae, Eq. (A.14) and its counterpart for the other region, Ωn,
adjacent to the interface. The resulting system of six equations for six unknown components
of u(x) and t(x) is

1
2 u(x) +

∫

S
mn

d2y
[
ΓT
m(x,y) · u(y) +GT

m(x,y) · t(y)
]

−
∑

S
im

∈∂Ω
m

i6=n

∫

S
im

d2y
[
ΓT
m(x,y) · u(y) +GT

m(x,y) · t(y)
]
= δm0 u

in(x) for x ∈ Smn (i-a) ,

(A.16a)

1
2 u(x)−

∫

S
mn

d2y
[
ΓT
n (x,y) · u(y) +GT

n (x,y) · t(y)
]

+
∑

S
nj

∈∂Ω
n

j 6=m

∫

S
nj

d2y
[
ΓT
n (x,y) · u(y) +GT

n (x,y) · t(y)
]
= δn0 u

in(x) for x ∈ Smn (i-b) .

(A.16b)
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With reference to Fig. 13, the first of the above integral equations represents contributions to
the displacement field u on the interface Smn due to the displacement and traction fields u and
t on the same interface (the first integral) and on remaining interfaces, Sim, forming boundaries
of the region Ωm with other regions Ωi, i 6= n; and similarly for the second equation, which
represents contributions of the boundaries of the region Ωn. The r.h.s.s of the above equations
are the incident fields due to distant sources in the region Ω0, hence the delta-functions δm0

and δn0.

We obtain the second, alternative, set (ii) of the integral equations by imposing the bound-
ary conditions (A.15) on both the displacement and traction fields. We again express the
displacements u by means of the representation formula (A.14) and its Ωn counterpart. For
the traction fields t we use the same representation formulae to which we apply the trac-
tion field operator n(x) · τ̂ [u(x)]. The resulting system (ii) of six equations for six unknown
components of u(x) and t(x) is now

∫

S
mn

d2y
{
[ΓT

m(x,y) + ΓT
n (x,y)] · u(y) + [GT

m(x,y) +GT
n (x,y)] · t(y)

}

−
∑

S
im

∈∂Ω
m

i6=n

∫

S
im

d2y
{
ΓT
m(x,y) · u(y) +GT

m(x,y) · t(y)
}

−
∑

S
nj

∈∂Ω
n

j 6=m

∫

S
nj

d2y
{
ΓT
n (x,y)] · u(y) +GT

n (x,y) · t(y)
}

= [δm0 − δn0]u
in(x) for x ∈ Smn (ii-a) ,

(A.17a)∫

S
mn

d2y
{
[WT

m(x,y) +WT
n (x,y)] · u(y) + [ΦT(x,y) + ΦT

n (x,y)] · t(y)
}

−
∑

S
im

∈∂Ω
m

i6=n

∫

S
im

d2y
{
WT

m(x,y) · u(y) + ΦT
m(x,y) · t(y)

}

−
∑

S
nj

∈∂Ω
n

j 6=m

∫

S
nj

d2y
{
WT

n (x,y)] · u(y) + ΦT
n (x,y) · t(y)

}

= [δm0 − δn0] t
in(x) for x ∈ Smn (ii-b) ,

(A.17b)

where, in the second equation, the boundary-operator kernels are defined by

W (x,y) · u(y) = n(x) · τ̂ [Γ (x,y) · u(y)] ,

Φ(x,y) · t(y) = n(x) · τ̂ [G(x,y) · t(y)] .
(A.18)

As before, the operators with indices m and n describe propagation of the displacement and
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stress fields in the regions Ωm and Ωn. The details of the construction and regularization of the
kernels Gi, Γi,Wi, and Φi are described in a paper we are preparing for publication in JASA.

The main advantage of the set (ii) of the integral equations is that it results in higher
solution accuracy at material discontinuities; it is achieved through explicit imposition of
boundary conditions on the displacement and the traction fields, rather than by means of the
weaker integral relations used in the formulation (i). We also find that the second choice,
(ii), yields a better solution convergence in high contrast problems. Theoretical aspects of the
differences between the two above-mentioned choices, (i) and (ii), will be more fully investigated
in the near future.

A.3 Matrix compression

The underlying element of our approach is the Fast Fourier Transform (FFT)-based AIM
matrix compression method, initially developed in the context of electromagnetics for solving
large-scale problems, and described in detail in Ref. [5]. Adaptation of this formulation to
large-scale acoustic problems [1, 2] was the initial step of our effort.

The main reason for choosing the FFT-based compression method, rather than other com-
pression techniques, is that it provides superior efficiency in the treatment of both volumetric
and surface integral equations, particularly for sub-wavelength problems (geometrical elements
used in objects’ discretizations – triangular facets and tetrahedrons – are much smaller than
the wavelength). We note that sub-wavelength geometry regions constitute dominant portion
of anatomically realistic head geometry models.
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Abstract

We describe selected aspects of the development and applications of integral equation
based solver designed for large scale numerical simulation of interaction of sound waves with
complex heterogeneous media. A particular application we are concerned with is modeling
of the propagation of the waves inside the human head subject to a pressure wave in the
surrounding air; the goal of this investigation is to estimate the amount of energy trans-
ferred to the inner ear by air- and bone-conduction mechanisms. The considered problem
is characterized by a high density contrast (biological tissues vs. air), which causes the
dominant part of the incident energy to be reflected, and makes the computation of the
penetrating energy flux rather nontrivial. In our previous work we developed and employed
a computational model based on volumetric integral-equations of acoustic/elastodynamics,
with the object modeled by means of a tetrahedral mesh. Since in this formulation the
equations were only providing the pressure (or displacement) distribution, computation of
the energy flux required numerical (finite-difference) evaluation of the normal derivative of
the pressure (or the traction), which we did not find sufficiently reliable, especially in the
geometrically complex region of the model near the inner ear. The present formulation is
based on surface integral equations, which provide simultaneously solutions for the pressure
and its normal derivative (or for the displacement and the traction). The equations are
discretized in terms of piecewise-constant and piecewise-linear basis functions supported
on facets of a triangulated surface model representing the human head including the skull,
the soft tissues, and the geometrical details of the middle and inner ear. The resulting stiff-
ness matrix is compressed by means of the Fast Fourier Transform (FFT)-based algorithm,
implemented in distributed-memory parallel processing environment, which allows han-
dling of problems involving several million unknowns. Particular attention was paid to the
appropriate choice of the compression parameters in the practically available anatomical
models characterized by large differences of the mesh densities. We also present results em-
ploying several alternative integral-equation formulations of the multi-region transmission
problem, giving rise to either first- or second-kind equations, with different conditioning
properties. In this context we analyzed some pertinent preconditioning techniques, includ-
ing a Calderón-type preconditioner for the first-kind and an additive-type preconditioner
for the second-kind equations in the high-contrast problems.

B.1 Introduction

The purpose of this work is to analyze some aspects of wave propagation and the resulting
energy flow in a human head subject to an incident acoustic wave propagating in the surround-
ing air. This analysis is carried with the goal of estimating the amounts of energy reaching
the inner ear, due to various sound wave conduction mechanisms. In the following we briefly
discuss difficulties arising in this investigation and the solutions implemented in our work.
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Mechanisms of energy transport in the human head. It is known that the normal
airborne mechanism of acoustic energy transfer to the cochlea – through the outer auditory
canal, the tympanic membrane, and the middle-ear system of ossicles – is not the only one
in operation. Alternative energy flow paths, in particular due to bone conduction, are being
utilized in, e.g., in hearing-enhancement devices. The same mechanisms, however, can also
transfer to the inner ear the energy due to an intense noise; since those pathways circumvent
the usual airborne sound transmission channel, they may potentially cause inner ear damage
in spite of application of conventional protective devices, such as ear plugs.

Significance of high medium contrasts in evaluation of energy transfer. A charac-
teristic feature of the considered problem of acoustic wave propagation is a very high density
contrast (density ratio of the order of 1000) between the biological tissues and the surrounding
air; at the same time, the refractive indices of those media differ by only a modest factor
of at most 5. The high density contrast causes a large impedance mismatch and greatly re-
duces the energy transfer through the air-tissue interface. This circumstance is the reason why
the ear structure of animals living in the atmosphere evolved to form an exceedingly sensi-
tive impedance-matching mechanism consisting of the tympanic membrane and the middle-ear
system.

In this context, we note that the area of acoustics and elasticity we are concerned with –
high-density objects subject to waves incident from the surrounding low-density medium – has
been relatively little explored. For instance,

- Marine applications involve interaction of waves in water with denser materials (metallic
objects, rock), but the density contrast is much lower than in our case; e.g., steel-to-water
density ratio is about 8.

- In geophysical (seismic) applications the object of interest (the Earth) is surrounded by
air, but wave propagation through the atmosphere is not being considered at all.

- Mechanical engineering problems often involve interaction of vibrating structures with
air; however, it is the vibrating structure (e.g., a body of a vehicle) which is the source
of sound waves, and the effect of the acoustic waves on that structure is negligible.

- Finally, relatively little theoretical work has been done on transmission problems involv-
ing high-contrast media.

Computational aspects. In view of the high density contrasts and the the resulting impedance
mismatch, reliable computation of the amount of energy reaching the inner ear becomes a
highly demanding task . This energy is relatively small and its value depends on the energy
flux though the high-contrast air-tissue interface (including effects of many air cavities present
in the head). The energy flux, in turn, is proportional to the product of two physical quan-
tities on the outer side of the interface: the pressure p and its normal derivative ∂p/∂n (the
latter quantity is, essentially, the normal component of the velocity of the medium). Because
of the large density contrast, the problem of the tissue-air interface is nearly that of the hard
surface: the value of p on the surface is roughly of the same magnitude as the pressure in
the surrounding air, but the normal derivative ∂p/∂n is much smaller than in the surrounding

25



space, and its evaluation is not entirely straightforward. In addition, ∂p/∂n has to be known
to a sufficient accuracy, since the relative energy flux value is linear in that quantity and the
same is true for the error in the energy flux.

Past and present approaches. In our previous analysis [1, 2] we developed and imple-
mented an approach based on a volumetric integral equation for an inhomogeneous material.
Because of the high-contrast nature of the considered problems, that approach required, ef-
fectively, introducing surface distributions of the pressure and velocity fields associated with
high-contrast interfaces.

In this work we extended the surface-related elements of our previous approach to a full
surface-equation formulation for a problem involving multiple piecewise-homogeneous mate-
rial regions and high-contrast interfaces. An additional motivation for this development was
availability of detailed surface geometry data for the middle and inner ear structures: While
moderate-resolution voxel-type data are readily accessible for entire human bodies (e.g., [6]),
this is not the case for the more detailed skull and inner ear regions. Furthermore, a practical
obstacle in utilizing voxel data is the necessity of “segmentation”, i.e., identification of tissue
types – a difficult and time-consuming process that can be only partly automated. At the same
time, more precise middle- and inner-ear data based on micro-magnetic-resonance imaging are
typically available in the form of reconstructed interfaces between tissues.

Further, having implemented both volume and surface solution methods, we now envisage
a comprehensive approach combining them into a full solvers based on a system of mutually
coupled equations. It could be, in particular, applied to models consisting of both volumetric
regions (with a relatively “coarse” discretization of one or few millimeters) and of detailed
interfaces discretized with sub-millimeter resolution. In fact, in the surface geometries we have
been using in the computations reported here, triangle sizes span two order of magnitude, from
about 5mm to 0.05mm = 50µm.

Contents of the paper. The paper is organized as follows: In Section B.2 we present an
integral-equation formulation applicable to two types of multi-domain problems which involve
either a collection of piecewise homogeneous material domains or a collection of both piece-
wise homogeneous and inhomogeneous domains. In Section B.3 we discuss some aspects of
discretization of the equations, in particular in the presence of junctions of several interfaces.
We also describe some basic elements of the FFT-based matrix compression and matrix-vector
product acceleration, which allow us to solve large scale problems. In Section B.5 we present
results of representative numerical simulations for a geometry consisting of a human head con-
taining a detailed geometry representation of the outer, middle, and inner ear. Results of such
simulations may provide an insight into physics of sound wave propagation and energy flow
to cochlea cavity obtained with nontrivial geometries of a realistic human head model and
demonstrate the present capabilities of our solver.

B.2 Integral equations for the multi-region transmission problem in acous-
tics

Simulating sound propagation in an anatomically realistic model of the human head requires
modeling of topologically complex structure of material regions and interfaces. The driving
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physical mechanism controlling the energy flow through the model is the variation of densi-
ties between the material regions (modeled as homogeneous domains). Therefore, in order
to obtain a reliable prediction for the energy transfer across the interfaces it is necessary to
accurately discretize the pressure and its normal derivative on complicated surface geometries.
The surfaces may be nested inside one another, a number of surfaces may be enclosed in an-
other one, and several surfaces may form a “junction”, i.e., share a common boundary line or
a boundary point (such structures are sometimes referred to as “triple-points” or “multiple
points” [7]). Some of that complexity of the set of surfaces may also be introduced for con-
venience of geometry modeling (e.g., a complex surface may be built of a number of simpler
patches).

A representative geometry structure of our interest is depicted schematically in Fig. 56. It
involves a number of soft tissues, brain, and the skull with air cavities. The interfaces between
various materials form a number of junctions, which, in this case, are common boundaries of
triplets of interfaces.

Figure 14: A simplified schematics of the topological structure of regions and interfaces in head
model.

Since we are primarily interested in computing the energy flow, it is convenient to use as the
unknowns the fields appearing in the expression for the energy flux (Eq. (B.4)): the pressure
p and its normal derivative ∂n p (which we call, for simplicity, the velocity field). We obtain
the surface integral equations in the following steps:

- We write the representation formulae for the pressure fields p on boundaries of material
region Ωm, in terms of the values of p and ∂n p on the same region boundaries.

- Write the representation formulae for the velocity field ∂n p of the boundaries ∂Ωm, again
in terms of the boundary values of p and ∂n p. This representation formula is obtained
by taking the normal derivative of the previous formula.

- We impose boundary conditions (Eq. (B.1)) on the boundaries (i.e., region-region inter-
faces). These conditions relate both field p and ∂n p being represented by the integrals
of the representation formulae and the quantities appearing in the integrands.
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- We form appropriate linear combinations of the representation formulae. Here we may
choose to use representation formulae for both p and ∂n p), and obtain in this way
first-kind (elliptic) equations; or we may utilize only the representation formulae for the
pressure and obtain second-kind equations. In both cases the unknowns in the equations
are the quantities appearing in the integrands of the representation formulae, i.e., the
boundary values of p and ∂n p.

B.2.1 Differential equations of acoustics and boundary conditions

In this section we briefly summarize here the differential equations governing acoustic fields,
which will be used to obtain the integral equations described in Section B.2. We consider
a bounded spatial domain Ω filled with a material characterized by (generally) position-
dependent density and compressibility ρ(r) and κ(r). The surrounding unbounded “outer
region” Ω0 is assumed to be homogeneous and described by the “background” parameters ρ0
and κ0. Correspondingly, in a time-harmonic problem with frequency ω the wave number in
the background medium is k0 :=

√
ρ0 κ0 ω . The Euler equation for the pressure field p(r)

(known, in this form, as the Bergmann equation [8, 4]) is

ρ(r)

ρ0
∇ ·

(
ρ0
ρ(r)

∇p(r)

)
+ k20

ρ(r)κ(r)

ρ0 κ0
p(r) = 0 . (B.1)

Equation (B.1) for an inhomogeneous object can be solved as the volumetric Lippmann-
Schwinger integral equation. We followed this venue in our previous work [1, 2], where we
developed efficient numerical techniques for handling of situations relevant in the considered
applications, i.e., discontinuous material parameters [9] and high-contrast interfaces.

The general result following from our previous investigations was that the energy flow
through the object was essentially smooth even in inhomogeneous regions, as long as the
material density was varying in a range typical of biological tissues (about a factor of two);
however, the energy flux through high-contrast interfaces was strongly dependent on the shape
and geometrical details of the interface.

Since the behavior of the energy flux is of main interest in the present application, we
concentrate here on a surface form of the integral equations, assuming the object is modeled as
a piecewise-homogeneous structure, isuch that in each homogeneous sub-region Ωm described
by the parameters (ρm, κm) the pressure field pm satisfies the Helmholtz equation

(
∇

2 + k2m
)
p(r) = 0 for r ∈ Ωm . (B.2)

with the wave number km :=
√
ρm κm ω . The original equation (B.1) implies then the trans-

mission boundary conditions on the interfaces of regions,

p(r) and
ρ0
ρ(r)

∂p(r)

∂n(r)
:=

ρ0
ρ(r)

n(r) ·∇ p(r) continuous across the interface ; (B.3)

here and below n is the unit normal to the interface, and normal derivatives are denoted with
∂n.
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B.2.2 Surface integral equations for p(r) and ∂p(r)/∂n(r) for a single material
body

In this Section we present a brief derivation of the surface integral equations for a problem
involving a single material region. The two unknown functions appearing in such integral
equations are chosen to be as pressure p(r) and the normal derivative of pressure defined on
material interfaces.

We recount here the known basic forms of the surface integral equations for the transmission
problem involving only a single body occupying a domain Ωm (Fig. 15).

Figure 15: The simplest transmission problem with a single material region Ωm. The bound-
ary Γm is oriented according to the direction of the normal, and Γ±

m are its “positive” and
“negative” sides.

While there is some freedom in choosing the unknown quantities in integral-equation formu-
lations, we opted for equations obtained by means of a direct method, in which the unknowns
are the values of the physical quantities – the pressure and its normal derivative (i.e., velocity)
on the surfaces. An advantage of such a form of integral equations is that the unknown fields
appear directly in the expression for the density of the energy flux through a surface,

F (r) := −
ρ0
k0 ρ

Im
{
p∗(r) ∂n p(r)

}
; (B.4)

this quantity is normalized to be unity for a unit-amplitude plane pressure wave incident
normally on the surface, and, in view of the boundary conditions (B.2), is continuous across
the interfaces.

It is convenient to use in this formulation not directly the normal derivatives of the pressure
field, but rather those derivatives divided by the density of the medium. More precisely, for a
region Ωm and its boundary ∂Ωm, we to define the boundary fields

q(r) :=
ρ0
ρm

∂ p(r)

∂n(r)
(B.5)

for r approaching the boundary from inside Ωm. According to the boundary conditions (B.3),
those fields are simply continuous across the interfaces. As a result, the energy flux density
(B.4) through any interface can be expressed in terms of fields p and q as

F (r) := −
λ

2π
Im

{
p∗(r) q(r)

}
, (B.6)
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where λ := 2π/k0 is the wavelength in the background medium.
Our equations are obtained by means of the “direct method”, i.e., from the representation

formulae (essentially Green’s second identities) applied to boundary values of the fields in all
material regions. Such a formula for a field p satisfying Eq.(B.2) in a region Ωm is

∫

∂Ω
m

d2r′
[
∂ gm(r − r′)

∂ n(r′)
p(r′)−

ρm
ρ0

gm(r − r′) q(r′)

]

≡

∫

∂Ω
m

d2r′
[
∂′n gm(r − r′) p(r′)− ĝm(r − r′) q(r′)

]
=

{
− p(r) for r ∈ Ωm ,

0 for r 6∈ Ωm ,

(B.7)

where the derivatives are taken along the normal exterior to Ωm (as in Fig. 15), p and q in
the integrand are the boundary values of the fields, and

gm(r) =
e i kmr

4π r
(B.8)

is the Green function of the Helmholtz equation in the region Ω.
While the formula (B.7) holds in the entire space, integral equations relate boundary values

of the fields. They can be expressed in terms of the single- and double-layer boundary operators,
belonging to the standard set of operators:

(
V m φ

)
(r) :=

ρm
ρ0

∫

Γ
m

d2r′ gm(r − r′)φ(r′) (single-layer) , (B.9a)

(
Km φ

)
(r) :=

∫

Γ
m

d2r′
∂gm(r − r′)

∂n(r′)
φ(r′) (double-layer) , (B.9b)

(
K ′

m φ
)
(r) :=

∫

Γ
m

d2r′
∂gm(r − r′)

∂n(r)
φ(r′) (adjoint double-layer) , (B.9c)

(
Wm φ

)
(r) := −

ρ0
ρm

∂

∂n(r)

∫

Γ
m

d2r′
∂gm(r − r′)

∂n(r′)
φ(r′) (hyper-singular) (B.9d)

(our definition does not include the factor “2” appearing in some references (e.g., in [10]).
[we do not enter into a rigorous discussion of the conditions under which the representation

formulae are valid, including the question of the functional spaces of the sources and fields –
this is a complex subject; we only mention that most of the results in the following hold not
only for smooth surfaces, but also for Lipschitz-continuous surfaces, hence, in particular, for
polyhedral domain boundaries commonly assumed in practical applications

In the notation of Fig. 15, the boundary values of the integrals in the representation formula
(B.7) are now

∫

Γ
m

d2r′ ∂′n gm(r − r′) p(r′) =
(
Km p

)
(r)± 1

2 p(r) for r → Γ±
m (B.10a)

and ∫

Γ
m

d2r′ gm(r − r′) q(r′) =
(
V m p

)
(r) for r → Γ±

m . (B.10b)
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Hence, for the observation point approaching the boundary from either side, the representation
formula (B.7) yields the relation

1
2 p = −Km p+ V m q . (B.11)

By multiplying the above equality by ρ0/ρm, taking its normal derivative, and using K ′
m =

(ρ0/ρm) ∂n V m and W ′
m = − (ρ0/ρm) ∂nKm, we find another relation,

1
2 q =Wm p+K ′

m q . (B.12)

Analogous relations are obtained for the exterior region Ω0, where the representation formula
includes also the incident fields (asymptotic field values on the “boundary” of Ω0 at infinity.
The resulting set of four relations is then

W 0 p+
(
1
2 I +K ′

0

)
q = q(inc) , (B.13a)

(
1
2 I −K0

)
p+ V 0 q = p(inc) , (B.13b)

−Wm p+
(
1
2 I −K ′

m

)
q = 0 , (B.13c)(

1
2 I +Km

)
p− V m q = 0 . (B.13d)

By taking the difference of (B.13a) and (B.13c), and the difference of (B.13d) and (B.13b),
one obtains the manifestly symmetric first-kind system of equations

[
W 0 +Wm K ′

0 +K ′
m

K0 +Km −V 0 − V m

] [
p

q

]
=

[
q(inc)

− p(inc)

]
, (B.14)

which can be proven to be strongly elliptic [11]. Similarly, by taking just equations (B.13b)
and (B.13d), one finds the “simple equations” for the transmission problem [12, 13, 14, 15],

[
1
2 I −K0 V 0
1
2 I +Km −V m

] [
p

q

]
=

[
p(inc)

0

]
. (B.15)

Further, taking the sum and the difference of the above equations, results in the set of
equations [

I −K0 +Km V 0 − V m

− K0 −Km V 0 + V m

] [
p

q

]
=

[
p(inc)

0

]
, (B.16)

which, due to the appearance of the identity operator in one of the diagonal blocks, can be
considered a second-kind system.

B.2.3 Surface integral equations for p(r) and ∂p(r)/∂n(r) for multiple regions and
interfaces

In this Section we present a brief derivation of the surface integral equation formulation for
problems involving multiple material regions. The two unknown functions appearing in such
integral equations are chosen to be the pressure p(r) and its normal derivative, both defined
on defined on material interfaces.
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Although we have obtained such equation in both first- and second-kind formulations, we
discuss here, for definiteness, the system of second-kind integral equations – a generalization
of the system of equations (B.16).

(a) (b)

Figure 16: Examples of simplest multi-region geometries: nested regions (a) and adjacent
regions with a triple-interface junction (b).

In a multi-region transmission problem we consider regions Ωm and oriented interfaces Γ i with
normals pointing from their negative to the positive sides. We introduce “orientation factors”
σim = ±1, defined such that

σim =





+1 if Ωm is adjacent to the positive side of Γ i ,

−1 if Ωm is adjacent to the negative side of Γ i ,

0 otherwise .

(B.17)

In this notation, the relations (B.13b) and (B.13d) generalize to

∑

j

(
1
2 δij pj − σjmKm pj + σjm V m qj

)
= δm0 p

(inc)
i (B.18)

for any interface Γ i belonging to the boundary ∂Ωm, and for any orientations of interfaces.
By considering the other region adjacent to Γ i, say Ωn, we obtain the analogous relation

∑

k

(
1
2 δik pk − σknKn pk + σkn V n qk

)
= δn0 p

(inc)
i , (B.19)

where the sum is taken over interfaces Γ k forming the boundary of Ωn (Fig. 54).
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Figure 17: An interface Γ i and the two adjacent regions with their boundaries.

In the matrix form, the system (B.18) and (B.19) can be represented as




1
2 I − σimKm σim V m

1
2 I − σinKn σin V n





pi
qi




+
∑

j 6=i


−σjmKm σim V m

0 0





pj
qj


+

∑

k 6=i


 0 0

−σknKn σkn V n





pk
qk


 =


δm0 p

(inc)
i

δn0 p
(inc)
i


 .

(B.20)

By taking the sum of the first and second rows of these equations and the sum ot the rows
multiplied by σim and σin, and by rearranging the terms, we obtain, for each interface Γ i, a
system of equations of the form

∑

j

Aij


pj
qj


 =


σ

2
i0 p

(inc)
i

σi0 p
(inc)
i


 , (B.21)

where the blocks of operators are given by

Aij = δij


 I 0

0 0


 +

∑

m


 −σjmKm σjm V m

−σim σjmKm σim σjm V m


 , (B.22)

where the sum runs over all regions Ωm shared by both the interfaces Γ i and Γ j. In the case
of a single material domain, the system (B.21) reduces to the sum-and-difference equations
(B.16).

B.2.4 Scaling of matrix blocks for high-contrast problems

In high density-contrast problems equations (B.16) and their multi-region generalization (B.21)
exhibit unfavorable conditioning properties: Since the single-layer operators V m (Eq. (B.9a))
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are proportional to the factors ρm/ρ0 ≫ 1 (for m 6= 0), the operators V m dominate V 0

(wherever the latter appear) and all blocks involving single-layer operators are proportional
to large density ratios. For instance, at low frequencies, the block of operators in the system
(B.16) becomes [

I −K0 +Km V 0 − V m

− K0 −Km V 0 + V m

]
≈

[
I −V m

− 2K0 V m

]
; (B.23)

we used here the fact that, for an object much smaller than the wavelength, there is little
difference between the operators K0 and Km (provided the refraction indices of the media are
similar, which we always assume). Hence, for a high density contrast, there is an imbalance
between the operator blocks and the condition number of the system increases by a factor of
order ρm/ρ0.

A simple way of improving the conditioning of the system is to multiply all the matrix
blocks involving the single-layer operators by a small factor ξ of order ρ0/ρm, solve the modified
system, and finally multiply the q blocks of the solution by the same factor ξ. For instance,
after solving the rescaled system (B.16),

[
I −K0 +Km ξ (V 0 − V m)

− K0 −Km ξ (V 0 + V m)

] [
p

q̂

]
=

[
p(inc)

0

]
, (B.24)

the actual solution is obtained as q = ξ q̂.
As we discuss in Section B.5.1, the above preconditioning procedure improves very signif-

icantly the convergence of the iterative solution. More importantly, for low frequencies and
larger contrasts (ρm/ρ0 & 100), preconditioning is necessary in order to obtain the correct
solution of the system, unless one is prepared to carry out a large number of iterations to reach
relative residual values of order 10−6 or so; and even in that case the quality of the solution is
questionable.
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B.2.5 Coupled volume and surface equations for partly inhomogeneous objects

We present here a formulation of a system of integral equations describing an object consisting
of both homogeneous and inhomogeneous regions; this type of a problem is illustrated with
two examples:

A homogeneous inclusion in an inhomogeneous object. We consider an inhomoge-
neous region Ω embedded in background-space region Ω0 and containing a homogeneous in-
clusion Ωm (Fig. 18).

Figure 18: An inhomogeneous region Ω with a homogeneous inclusion Ωm. Symbols Γ±
0 and

Γ±
m in the text refer to positive and negative sides of the interfaces, according to the directions

of the normals.

In the region R
3 \ Ωm the Euler equation satisfied by the pressure p can be written in an

equivalent form

(
∇

2 + k20
)
p(r)− k20

(
1−

κ(r)

κ0

)
p(r)−∇ ·

[(
1−

ρ0
ρ(r)

)
∇p(r)

]

=:
(
∇

2 + k20
)
p(r) + Sp(r) = 0

(B.25)

where the source term Sp is a functional of p (dependent on p and ∇p).
It follows from Eq. (B.25) that the pressure field satisfies the representation formula

∫

Γ−
0

d2r′
[
∂ g0(r − r

′)

∂ n(r′)
p(r′)− g0(r − r

′)
∂ p(r′)

∂ n(r′)

]

−

∫

Γ+
m

d2r′
[
∂ g0(r − r

′)

∂ n(r′)
p(r′)− g0(r − r

′)
∂ p(r′)

∂ n(r′)

]
−

∫

Ω

d3r′ g0(r − r
′)Sp(r

′)

=

{
0 for r 6∈ Ω ,

− p(r) for r ∈ Ω .

(B.26)
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The two surface integrals in the above equation are due to the outer and inner parts of the
boundary of Ω, ∂Ω = Γ 0 ∪ Γm (Fig. 18). The derivatives are taken, respectively, along the
normals exterior to the domains Ω and Ωm, as also shown in Fig. 18. The field and field
derivative are the limiting values reached when approaching the boundaries from the interior
of the domain Ω.

In order to obtain the L-S equation in Ω we also consider the scattered field, satisfying the
representation formula

∫

Γ+

0
∪Γ−

R

d2r′
[
∂ g0(r − r

′)

∂ n(r′)
p(sc)(r′)− g0(r− r

′)
∂ p(sc)(r′)

∂ n(r′)

]
=

{
p(sc)(r) for r ∈ Ω0 ,

0 for r 6∈ Ω0 .
(B.27)

The normal direction in Eq. (B.27) is the same as in (B.26), i.e., exterior to the domain Ω (as
shown in Fig. 18) and the fields in the integral are taken on the “interior” side of the boundary
of Ω0 bounded by a large sphere of radius R, ∂Ω0,R = Γ 0 ∪ ΓR. The Sommerfeld radiation
condition implies that the contribution to the integral from ΓR can be dropped.

Similarly, the solution p(r) of the Helmholtz equation (B.2) satisfies the representation
formula

∫

Γ−
m

d2r′
[
∂ gm(r − r′)

∂ n(r′)
p(r′)− gm(r − r′)

∂ p(r′)

∂ n(r′)

]
=

{
0 for r 6∈ Ωm ,

− p(r) for r ∈ Ωm ,
(B.28)

with the normal nm shown in Fig. 18 and with the Green’s function in the region Ωm,

gm(r) =
e i km r

4π r
. (B.29)

The representation formula (B.28) can be obtained in the same way as (B.26) in the absence
of the source term S. Further, by using the boundary conditions (B.1) to relate the values and
gradients of p taken on the two sides of the boundary Γm, we can rewrite the representation
formula (B.28) as

∫

Γ+
m

d2r′
[
∂ gm(r − r′)

∂ n(r′)
p(r′)− gm(r − r′)

ρm
ρ(r′)

∂ p(r′)

∂ n(r′)

]
=

{
0 for r 6∈ Ωm ,

− p(r) for r ∈ Ωm ,
(B.30)

where ρ(r′), p(r′), and ∂n p(r
′) are the limiting values of these functions for Ω ∋ r′ → Γm.

By considering r ∈ Ω, taking the difference of Eqs. (B.26) and (B.27), and using the
relation p− p(sc) = p(inc) we obtain

−

∫

Γ+
m

d2r′
[
∂ g0(r − r

′)

∂ n(r′)
p(r′)− g0(r − r

′)
∂ p(r′)

∂ n(r′)

]
−

∫

Ω

d3r′ g0(r − r
′)Sp(r

′)

+

∫

Γ−
0

d2r′
[
∂ g0(r − r

′)

∂ n(r′)
p(r′)− g0(r − r

′)
∂ p(r′)

∂ n(r′)

]

−

∫

Γ+

0

d2r′
[
∂ g0(r − r

′)

∂ n(r′)
p(sc)(r′)− g0(r − r

′)
∂ p(sc)(r′)

∂ n(r′)

]
= − p(r) for r ∈ Ω .

(B.31)
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By using again in the last integral p(sc) = p− p(inc) we find

−

∫

Γ+
m

d2r′
[
∂ g0(r − r

′)

∂ n(r′)
p(r′)− g0(r − r

′)
∂ p(r′)

∂ n(r′)

]
−

∫

Ω

d3r′ g0(r − r
′)Sp(r

′)

+

{∫

Γ−
0

−

∫

Γ+

0

}
d2r′

[
∂ g0(r − r

′)

∂ n(r′)
p(r′)− g0(r − r

′)
∂ p(r′)

∂ n(r′)

]

+

∫

Γ+

0

d2r′
[
∂ g0(r − r

′)

∂ n(r′)
p(inc)(r′)− g0(r − r

′)
∂ p(inc)(r′)

∂ n(r′)

]
= − p(r) for r ∈ Ω .

(B.32)

But the last integral in this expression is, by the Green’s second identity, simply − p(inc)(r). In
the previous difference of integrals the terms proportional to p cancel, because p is continuous
across Γ 0. However, if ρ is discontinuous across the boundary, ∂p/∂n is discontinuous as well.
The boundary condition (B.3) yields then

−

∫

Γ+
m

d2r′
[
∂ g0(r − r

′)

∂ n(r′)
p(r′)− g0(r − r

′)
∂ p(r′)

∂ n(r′)

]
−

∫

Ω

d3r′ g0(r − r
′)Sp(r

′)

−

∫

Γ−
0

d2r′ g0(r − r
′)

(
1−

ρ0
ρ(r′)

)
∂ p(r′)

∂ n(r′)
− p(inc)(r) = − p(r) for r ∈ Ω .

(B.33)

The above expression, with the source density Sp given by Eq. (B.25), constitutes the volumet-
ric equation in the desired system. The surface equation is simply the representation formula
(B.30) with the point r approaching the positive side of Γm. Thus, finally, the set of coupled
volume and surface equations is

p(inc)(r) = p(r)

+

∫

Ω

d3r′ g0(r − r
′)

{
k20

(
1−

κ(r′)

κ0

)
p(r′) +∇r′ ·

[(
1−

ρ0
ρ(r′)

)
∇r′ p(r

′)

]}

−

∫

Γ−
0

d2r′ g0(r − r
′)

(
1−

ρ0
ρ(r′)

)
∂ p(r′)

∂ n(r′)

−

∫

Γ+
m

d2r′
[
∂ g0(r − r

′)

∂ n(r′)
p(r′)− g0(r − r

′)
∂ p(r′)

∂ n(r′)

]
for r ∈ Ω (B.34a)

and ∫

Γ+
m

d2r′
[
∂ gm(r − r′)

∂ n(r′)
p(r′)− gm(r − r′)

ρm
ρ(r′)

∂ p(r′)

∂ n(r′)

]
= 0 for r ∈ Γ+

m . (B.34b)

In Eq. (B.34a) we marked explicitly that it holds not only inside the domain Ω but, by
continuity, also on its boundary.

Adjacent homogeneous and inhomogeneous regions. As another example we consider
adjacent inhomogeneous and homogeneous regions Ω and Ωm, both embedded in background-
space region Ω0 and containing (Fig. 19).
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Figure 19: A homogeneous region Ωm adjacent to an inhomogeneous region Ω. Γm and Γm0

denote two parts of the boundary of Ωm.

The representation formula (B.26) remains in this case unchanged, provided Γ+
m is the

interface of Ω and Ωm. On the other hand, the analogue of the formula (B.27) for the scattered
field contains an additional contribution from the interface between the regions Ω0 and Ωm,

∫

Γ+

0
∪Γ+

m0

d2r′
[
∂ g0(r − r

′)

∂ n(r′)
p(sc)(r′)−g0(r−r

′)
∂ p(sc)(r′)

∂ n(r′)

]
=

{
p(sc)(r) for r ∈ Ω0 ,

0 for r 6∈ Ω0 ,
(B.35)

where we dropped the vanishing contribution from Γ−
R . By taking again the difference of

Eqs. (B.26) and (B.35) for a point r ∈ Ω and by using p(sc) = p− p(inc) we obtain

−

∫

Γ+
m∪Γ+

m0

d2r′
[
∂ g0(r − r

′)

∂ n(r′)
p(r′)− g0(r − r

′)
∂ p(r′)

∂ n(r′)

]
−

∫

Ω

d3r′ g0(r − r
′)Sp(r

′)

+

{∫

Γ−
0

−

∫

Γ+

0

}
d2r′

[
∂ g0(r − r

′)

∂ n(r′)
p(r′)− g0(r − r

′)
∂ p(r′)

∂ n(r′)

]

+

∫

Γ+

0

d2r′
[
∂ g0(r − r

′)

∂ n(r′)
p(inc)(r′)− g0(r − r

′)
∂ p(inc)(r′)

∂ n(r′)

]
= − p(r) for r ∈ Ω .

(B.36)

which differs from Eq. (B.32) only by the additional contribution from the interface Γ+
m0. The

remaining steps in the derivation are as before, and the final set of coupled volume and surface
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equations becomes

p(inc)(r) = p(r)

+

∫

Ω

d3r′ g0(r − r
′)

{
k20

(
1−

κ(r′)

κ0

)
p(r′) +∇r′ ·

[(
1−

ρ0
ρ(r′)

)
∇r′ p(r

′)

]}

−

∫

Γ−
0

d2r′ g0(r − r
′)

(
1−

ρ0
ρ(r′)

)
∂ p(r′)

∂ n(r′)

−

∫

Γ+
m∪Γ+

m0

d2r′
[
∂ g0(r − r

′)

∂ n(r′)
p(r′)− g0(r − r

′)
∂ p(r′)

∂ n(r′)

]
for r ∈ Ω (B.37a)

and ∫

Γ+
m∪Γ+

m0

d2r′
[
∂ gm(r − r′)

∂ n(r′)
p(r′)− gm(r − r′)

ρm
ρ(r′)

∂ p(r′)

∂ n(r′)

]
= 0 for r ∈ Γ+

m ∪ Γ+
m0 ,

(B.37b)

where the surface equation (B.37b) is simply the representation formula for the region Ωm

involving the entire boundary of that region.

Discretization. For concreteness we consider here the geometry of Fig. 18 and write the
resulting system of equations (B.34) as

p(r)−
(
U pΩ

)
(r)

−
(
K0 p Γ+

m

)
(r) +

(
V0 ∂np Γ+

m

)
(r) = p(inc)(r) for r ∈ Ω , (B.38a)

(
(12 I +Km) p Γ+

m

)
(r)−

(
V̂ m

ρm
ρ
∂np Γ+

m

)
(r) = 0 for r ∈ Γm . (B.38b)

Here in Eq. (B.37a) the operator U is a generalization of the volumetric “Newton potential”,

(
U pΩ

)
(r) :=

∫

Ω

d3r′ g0(r − r
′)Sp(r

′) , (B.39)

expressed in terms of the source density (as defined by Eq. (B.25)); V0 is the single-layer
potential

(
V0 φΓ

)
(r) :=

∫

Γ

d2r′ g0(r − r
′)φ(r′) , (B.40)

due to the source φ on an interface Γ , and K0 is the analogous double-layer potential, both
defined at all points of the domain Ω. The operators Km and V̂ m in Eq. (B.37b) are the usual
double- and single-layer boundary operators, the latter not including the density factor present
in the definition (B.9a). For simplicity, we assumed here material properties are smooth on
the boundary Γ 0, which allows us to omit the contribution of this surface to the volumetric
equation (the third line of Eq. B.34a). The presence of absence of such contributions (related
to discontinuities of the material parameters [9, 1, 2]) is a problem belonging to the purely
volumetric formulation, unrelated to the coupling of volume and surface equations.

With Γ+
m denoted simply by Γ , the unknown fields appearing in Eqs. (B.38) are the volume

pressure pΩ, surface pressure pΓ , and its normal derivative ∂n pΓ . For simplicity of notation,
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we assume now that pΩ is expanded in constant trial functions ϕt supported on tetrahedra t of
Ω, while the pΓ and pΓ are represented in terms of constant functions φf supported on facets
f of Γ . Accordingly, we denote the vector containing the unknown expansion coefficients as
consisting of three blocks, [ pt pf ∂npf ]

T.
In devising the testing procedure, we recall that Eq. (B.38a) holds not only in the region

Ω, but also on its boundary Γ . Therefore, that equation should be projected on both volume
and surface testing functions, for which we again assume the functions ϕt and φf . Then, when
projected on the latter functions, the potential operators K0 and V0 become the boundary
operators K0 and V̂ 0, and in this way one recovers the full set of surface equations. The
resulting discretized equations take then the schematic form




(
I − U

)
tt −

(
K0

)
tf

(
V0

)
tf

(
I − U

)
ft

(
1
2 I −K0

)
ff

(
V̂ 0

)
ff

0 (12 I +Km)ff −
(
ρ/ρm V̂ m

)
ff







pt

pf

∂npf




=




p
(inc)
t

p
(inc)
f

0



, (B.41)

with a square coefficient matrix.
In the absence of the homogeneous region Ωm the system (B.41) reduces trivially to the

purely volumetric L-S equation. It if also easy to show that, when region Ω becomes the
background space, Eqs. (B.41) reduce to the usual surface equations (B.15) for the transmission
problem, which can be then recast into the sum-and-difference form (B.16). In general, the
system (B.41) can be similarly rearranged by taking the sum and the difference of the second
and third equation. It is also evident that other than constant basis functions can be used in
the discretization.
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B.3 Implementation

In this Section we describe some freatures of the current implementation of the solver, in
particular discretization of the integral equations for multiple material regions and compression
of the resulting coefficient matrix.

B.3.1 Aspects of the discretization

Choice of trial and testing functions. The approach often used in discretizing trans-
mission problems (involving single- and double-layer operators, and possibly hyper-singular
operators) is to discretize the pressure and velocity fields p and q with piecewise constant and
piecewise linear functions, respectively. This choice is motivated by the mapping properties of
the operators [11] appearing in Eqs. (B.14) and (B.16): the operators K are of order 0, while
V ’s and W ’s have have orders −1 and +1.

From the point of view of the smoothing and differentiating properties of the operators, a
possible drawback of a linear interpolation for q is that it enforces continuity even at sharp
edges of the surface, where q is expected to be discontinuous. However, in anatomical models
we are working with the surfaces tend to be relatively smooth, linear interpolation for both p
and q appears to be advantageous. In fact, in our code we have implemented linear-functions
discretization for p and both constant- and linear-functions discretizations for q and our ex-
perience has shown that, overall, linear node-based functions are preferable. With this
choice, sharp edges and junctions of the surfaces can be handled by simply relaxing continuity
constraints on the velocity field, i.e., by introducing independent variables on edges of separate
surfaces.

As to the choice of testing functions, most engineering applications use collocation, in order
to minimize the cost of the stiffness matrix construction (as discussed, e.g., in [16]). In our
implementation we opted for a Galerkin method with the same spaces of testing and trial
functions; its higher computational cost is offset by matrix compression which requires only
computation of a highly sparse matrix representing couplings of nearby elements.

Treatment of junctions of surfaces. We first describe our treatment of junctions of tree
interfaces in the context of the previously discussed system of a single body partitioned into
two adjacent regions, shown in Fig. 16(b).

In this case the non-vanishing orientation parameters can be written as

σ11 = −1 , σ10 = +1 , (B.42a)

σ22 = −1 , σ20 = +1 , (B.42b)

σ32 = −1 , σ31 = +1 . (B.42c)
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The final matrix of operators is, therefore,

A =




I −K0 +K1 V̂ 0 − V̂ 1 −K0 V̂ 0 −K1 V̂ 1

−K0 −K1 V̂ 0 + V̂ 1 −K0 V̂ 0 K1 − V̂ 1

−K0 V̂ 0 I −K0 +K2 V̂ 0 − V̂ 2 K2 − V̂ 2

−K0 V̂ 0 −K0 −K2 V̂ 0 + V̂ 2 −K2 V̂ 2

K1 − V̂ 1 K2 − V̂ 2 I −K1 +K2 V̂ 1 − V̂ 2

K1 − V̂ 1 −K2 V̂ 2 −K1 −K2 V̂ 1 + V̂ 2




(B.43)

and the full system of equations takes the form

A




p1

q̂1

p2

q̂2

p3

q̂3




=




p
(inc)
1

p
(inc)
1

p
(inc)
2

p
(inc)
2

0

0




. (B.44)

According to the continuity criteria imposed on the solutions, we to discretize the system
(B.44) in terms of the total of seven sets of “composite basis functions” (CBFs), by expanding
the unknown fields in trial basis functions as

p(r) =
∑

v1

pv1 Φv1(r) +
∑

v2

pv2 Φv2(r) +
∑

v3

pv3 Φv3(r) +
∑

vJ

pvJ Υ vJ(r) (B.45a)

and

q(r) =
∑

V1

qV1 ΨV1(r) +
∑

V2

qV2 ΨV2(r) +
∑

V3

qV3 ΨV3(r) . (B.45b)

All the basis functions are linear functions associated with vertices (nodes) of the surface
mesh: Φvi are supported on sets of facets sharing interior vertices of an interface Γ i, Ψvi are
supported on sets of facets sharing all vertices (including boundary ones) of the interface, and
Υ vJ are associated with vertices of a junction J , i.e., with common vertices of several (here
three) interfaces.
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Assuming the same as above set of testing functions, we arrive at the discretized system
described by the square matrix which can be represented as

M =




Mv1 v1 Mv1V1 Mv1 v2 Mv1V2 Mv1 v3 Mv1V3 Mv1 vJ

MV1v1 MV1V1 MV1v2 MV1V2 MV1v3 MV1V3 MV1vJ

Mv2 v1 Mv2V1 Mv2 v2 Mv2V2 Mv2 v3 Mv2V3 Mv2 vJ

MV2v1 MV2V1 MV2v2 MV2V2 MV2v3 MV2V3 MV2vJ

Mv3 v1 Mv3V1 Mv3 v2 Mv3V2 Mv3 v3 Mv3V3 Mv3 vJ

MV3v1 MV3V1 MV3v2 MV3V2 MV3v3 MV3V3 MV3vJ

MvJ v1 MvJV1 MvJ v2 MvJV2 MvJ v3 MvJV3 MvJ vJ




. (B.46)

Here the 2× 2 blocks involving the “ordinary” basis functions Φ and Ψ (associated with single
interfaces) can be easily constructed from the operator matrix representation (B.43). For
instance, [

Mv2 v2 Mv2V2

MV2v2 MV2V2

]
=

[
(I −K0 +K2)v2 v2 (V̂ 0 − V̂ 2)v2V2

(−K0 −K2)V2v2 (V̂ 0 + V̂ 2)V2V2

]
(B.47)

and [
Mv2 v3 Mv2V3

MV2v3 MV2V3

]
=

[
(K2)v2 v3 (− V̂ 2)v2V3

(−K2)V2v3 (V̂ 2)V2V3

]
, (B.48)

etc.
The blocks in the last row and the last column, involving the junction basis functions, have

a more complex structure. To exhibit them explicitly, we have to represent the basis functions
Υ vJ (still schematically) as

Υ vJ = Υ vJ 1 + Υ vJ 2 + Υ vJ 3 , (B.49)

where Υ vJ i is supported on facets belonging to the interface Γ i.
Suppose then we want to find the formula for the blockMvJ vJ. We go back to the expression

(B.22) and take its (1, 1) block involving matrix elements between basis functions representing
the pressure, i.e., δij I +

∑
m(−σjmKm), and obtain

3∑

i=1

3∑

j=1

(
Υ vJ i , (δij I −

∑

m

σjmKm)Υ vJ j

)

=
3∑

i=1

(
Υ vJ i , I Υ vJ i

)
−

3∑

i=1

3∑

j=1

∑

m

σjm
(
Υ vJ i , Km Υ vJ j

)
.

(B.50)

This expression is still schematic, as it represents an entire matrix block. To be more specific,
we may consider the matrix element between the basis functions Υ vJ i α and Υ vJ j β, where α
and β label vertices on the junction (Fig. 20).
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Figure 20: One of contributions to a matrix element between two junction-type basis functions
associated with vertices α and β. The arrows indicate orientations of interfaces and the dashed
line shows the coupling of the facets f i ⊂ Γ i and f j ⊂ Γ j through the operator K1 in the
region Ω1.

The contribution indicated in this Figure is the second term in the last expression of Eq. (B.50)
with i = 1, j = 3, and m = 1, i.e., a coupling of facets f1 and f3 on interfaces Γ 1 and Γ 3

through the region Ω1.
In the actual implementation in the code, the junction-junction matrix elements such as

given by Eq. (B.50) are evaluated together with all other matrix elements between ordinary
basis functions. In fact, the considered facets f1 and f3 are also members of ordinary basis
functions Φv1 and Φv3 supported on the interfaces Γ 1 and Γ 3, and the contributions to various
basis functions are being evaluated simultaneously.

More specifically, our matrix fill algorithm involves an outer loop through pairs of interfaces
Γ i and Γ j and an inner loop through pairs of facets f i ⊂ Γ i and f j ⊂ Γ j. In the latter loop
all matrix elements between “primary” basis functions supported on f i and f j are computed
(there are 3 · 3 = 9 such matrix elements, since each triangular facet supports thee different
linear basis functions associated with three vertices of the triangle); then, contributions of facet-
facet matrix elements are being added to all relevant matrix elements between the “composite”
basis functions, including junction-type functions. In other words, the formula (B.50) is not
implemented literally as the sum indicated there, but rather by evaluating that expression
“inside-out”: we first compute the matrix elements

(
Υ vJ i α , Km Υ vJ j β

)
for all regions Ωm

and for all pairs of “primary” basis functions labeled by interfaces Γ i and Γ j, facets f i and
f j, and vertices α and β, and then add their contributions to the matrix elements in all blocks
in (B.46).

B.3.2 Matrix compression and fast matrix-vector multiplication

In the approach we describe here, we utilize the FFT-based AIM compression technique [5]
initially developed in the context of electromagnetics and adapted to acoustics [1]. Such a
matrix compression was developed in order to enable solving large linear sets of equations
with dense matrices utilizing storage and execution times characteristic of problems involving
sparse linear systems. (The physical idea behind the compression methods is that interactions
at large distances require less resolution than interactions at small distances. As the result,
the computational complexity and memory requirements of the compression methods scale
approximately linearly with the number of unknowns N .)

In order to explain the structure of this algorithm on a simple example, let us suppose
we are evaluating the far-field contribution p′ to the pressure, generated by the double-layer
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operator K acting on the input pressure field. We assume the input pressure has the expansion

p(r) =
∑

α

pα Υα(r) ≡
∑

α

pα

∑

i

Υ i
α(r) . (B.51)

Here αs are the unknown numbers and the index i labels interfaces Γ i supporting the composite
basis functions (CBFs) Υ i

α. Hence, in general, the sum

Υα(r) :=
∑

i

Υ i
α(r) (B.52)

constitutes a junction-type basis function supported on several interfaces; a particular case are
“ordinary” basis functions associated with single geometry components.

We are the evaluating projections of K p on the same set of basis functions, i.e.,

p ′
α :=

(
Υα , K p

)
. (B.53)

For the purpose of evaluating the far field, the basis functions Υα are approximated by distri-
butions of sources on nodes of a Cartesian grid,

Υ i
α(r) ≈

∑

u

Λi
αu δ

3(r − u) . (B.54)

With the operator kernel K(r, r′) = ∂g(r − r′)/∂n(r′), the result of the operator acting
on the field is

(
K p

)
(r) =

∑

β

pβ

∫
d3r′

∂g(r − r′)

∂n(r′)
Υ β(r

′) ≡
∑

β

pβ

∫
d3r′ g(r − r′)

∂

∂n(r′)
Υ β(r

′) ,

(B.55)

where the Green function g is taken with the parameters of the region through which the points
r and r′ communicate.

Suppose first the equations involve only a single operator K of the form such as one of the
blocks of (B.22). In this case, the far-field computation procedure is as follows:

We assume that the source x is represented in terms of the trial basis functions Υ x

xl(r) =
∑

β

xβ Υ
x l
β (r) ≡

∑

β

xlβ
∑

j

Υ x l j
β (r) . (B.56)

Here αs are the unknown numbers and the index i labels interfaces Γ i supporting the composite
basis functions (CBFs) xΥ i

α. We then consider the field y = K x created by an operator K acting
on the sources, projected on the testing basis functions Υ y i

α ,

yα :=
(
Υ y
α , K x

)
. (B.57)

The operator is assumed to be of the form

K = Dy g Dx , (B.58)
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where g is the Green function of the region in which the operator acts, and Dy and Dx are
differential operators (e.g., normal derivatives) acting at the field and sources points, hence
the field projections can be, after integrating by parts, represented as

ykα =
∑

β

∫
d2r1

∫
d2r2Dy Υ

y k
α (r1) g(r1 − r2)Dx Υ

x l
β (r2) x

l
β . (B.59)

At large distance between the field (observation) and the source points the (derivatives of)
the basis functions appearing in Eq. (B.59) can be approximated, for each interface Γ i, by
distributions of sources on nodes of a Cartesian grid,

Dy Υ
y k i
α (r) ≈

∑

u

Λ
(
Dy Υ

y k i
α

)
u δ

3(r −u) , Dx Υ
x l i
α (r) ≈

∑

v

Λ
(
Dx Υ

x l i
α

)
v δ

3(r − v) . (B.60)

The basis function is then approximated as

φf (r) ≃
∑

q∈C

Λf,q δ
3(r − q) , (B.61)

One of possible expressions for the far-field contribution to the coefficient matrix results from
substituting the expansions of auxiliary basis function given in terms of monopole sources is

AFar
f
1
, f

2

=
∑

q
1
∈C

∑

q
2
∈C

Λ
f
1
,q

1

g0(q1 − q2)Λ
n
f
2
,q

2

. (B.62)

In the case of the general integral-equation problem involving a matrix of operators and
the corresponding vectors of solution and r.h.s. functions, as exemplified by Eq. (B.44), the
far-field contribution to a matrix block acting on a source vector x has the form

ykα =
∑

m

∑

i

∑

u,v

∑

j

∑

l β

Λ
(
Dy Υ

y k i
α

)
u σ

η
im gm(u− v) σξj m Λ

(
Dx Υ

x l j
β

)
v x

l
β

≡
∑

m

∑

iu

Λ
(
Dy Υ

y k i
α

)
u σ

η
im

∑

v

gm(u− v)
∑

j l β

σξj m Λ
(
Dx Υ

x l j
β

)
v x

l
β

︸ ︷︷ ︸
Xm

v

≡
∑

m

∑

iu

Λ
(
Dy Υ

y k i
α

)
u σηim

∑

v

gm(u− v) Xm
v

︸ ︷︷ ︸
Y m
u

≡
∑

m

∑

iu

Λ
(
Dy Υ

y k i
α

)
u σ

η
im Y m

u .

(B.63)

The formula (B.63) is implemented as an outer loop through regions Ωm, containing nested
loops through the indices (j, β), v, and (i,u). The first inner (j, β)-loop evaluates the “Carte-
sian vector” Xm

v , i.e., the equivalent-source representation, in the region Ωm, of the input
MoM vector of coefficients xβ. The v-loop is implemented in terms of FFTs: the Cartesian
source vector Xm

v is transformed to the Fourier space, multiplied by the Fourier transform of
the Green function gm, and transformed back to form the Cartesian field vector Y m

u . In the
(i,u)-loop that vector is converted to the output MoM representation of the vector y. All the
above operations are performed for all regions Ωm (the outer loop) and the contributions to
the far output field are being added.
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B.3.3 Parallelization

In view of the relatively large scale of the problems we are solving – a reasonably realistic
geometry requires at least several hundred thousand unknowns – not only matrix compression,
but also parallelization of the solver becomes a necessity.

In our previously developed volumetric solver [2, 1] we have implemented a distributed-
memory message-passing (MPI) parallelization in conjunction with the FFT-based matrix
compression. It involved partition of the object geometry into multiple slice-type segments
and assigning each of the slices (together with its two or more nearest neighbors) to individual
processors. Each processor was using its “main” slice and its neighbors to construct a geometry
of a size sufficient to evaluate all the near-field couplings of the main slice elements with
the remainder of the object. The far-field couplings were handled by means of the matrix
compression and fast matrix-vector multiplication scheme, which also required each processor
to store and handle only quantities dependent on its local geometry and only the corresponding
segment (slice) of the global Cartesian grid.

One of the main reasons that distributed-memory approach has been effective was that the
geometry was volumetric and relatively uniformly discretized. These circumstances contributed
to a reasonable work load balancing, while the regular structure of the geometry partition
allowed a fairly simple communication scheme in exchanging data between the processors and
their memories.

In contrast, our present solver has to be able to handle surface models with fine geometry
details and widely varying discretization scales. In fact, in our models the triangle sizes span
two order of magnitude, from about 5mm in smooth geometry regions to 0.05mm = 50µm in
the middle and inner ear details. As a result, balancing the computational load by means of
geometry partition becomes increasingly difficult. Even if the numbers of geometry elements
(triangles, vertices) or unknowns were approximately equalized between the processors, the
numbers of their near-field couplings (and thus matrix elements) would still vary in a wide
range, typically from few tens to several thousand.

In this situation we opted, at least as an interim solution, for implementing a shared-
memory parallelization, especially in view of the presently available computational hardware.
Current desktop or even laptop systems provide relatively large amounts of RAM storage (tens
of gigabytes) accessed by several processors. Higher numbers of processors, along with larger
storage, are available on supercomputer architectures, typically allowing both message-passing
and shared memory access.

Our experience has shown that the shared memory (OpenMP) parallelization of the present
solver is entirely feasible and efficient. In the following we describe parallelization of the main
operations in the solver, in the order of decreasing computational cost:

1. In our nonuniform discretization problems the most computationally intensive solution
stage is the “far-field subtraction” in stiffness matrix construction. This operation (an
essential part of the AIM algorithm) handles the precomputed near-field matrix and
subtracts from them the corresponding far-field elements. Although the near-field is
globally sparse, its parts associated with finely discretized geometry regions may be
quite “dense”, i.e., matrix rows may contain several thousand nonzero elements. The
main computational cost is, therefore, evaluation of the far field (expressed in terms
of the equivalent-source coefficients and the Green function tabulated at nodes of the
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Cartesian grid) for each of the near-field matrix elements. At the same time, however,
this operation is performed independently for each matrix element, hence the resulting
loop can be immediately distributed among the threads. As a result, a nearly perfect
parallel speedup can be achieved.

2. The next most computationally expensive task is the evaluation of the near-field stiffness
matrix itself, chronologically preceding the previously described subtraction step. It
consists of two stages:

(a) Computation of the sparsity pattern of the matrix, based on the near-field range.
In this stage we generate a special structure (not yet the stiffness matrix itself)
storing information on the elements to be included in the matrix. Depending on
the type of basis functions (e.g., those associated with facets or with vertices), the
sparsity pattern stores, for each facet or vertex, the list of near facets or vertices.
The relevant geometry elements (facets or vertices) are here first distributed among
geometry buckets, each assigned to one and only one bucket. Then a double loop
through pairs of nonempty and sufficiently near buckets is executed and, within
those loops, loops through pairs of geometry elements in the buckets. In the latter
loops the distance the elements is checked and, if it does not exceed the near-field
range, the appropriate element is stored in the sparsity pattern.

Since the geometry elements are exclusively assigned to buckets, the outermost loop
through the buckets can be split into threads without causing storage conflicts: each
row of the sparsity pattern is then handled by only one thread. This scheme results,
therefore, in a speedup nearly equal the number of threads.

(b) Filling the determined structure of the sparse matrix. This task is more difficult to
parallelize,1 since the outer loops run through facets and facet-facet contributions to
vertex-vertex matrix elements are being gradually added (this scheme is most effi-
cient from the point of view of the total number of operations). Now, since different
pairs of facets contribute to the same vertex-vertex matrix element, different threads
may simultaneously try to write to the same storage location – although probability
of such an event decreases with the problem size. In order to prevent such storage
conflicts, we currently use the OpenMP locking function around the critical opera-
tion of adding/storing contributions to the output matrix elements. This solution,
however, is not fully satisfactory, as impairs the effectiveness of parallelization. A
better scheme (in the process of implementation) is similar to that used in con-
structing the sparsity pattern. The outer loops are taken through another set of
buckets, now defined as containing sets of facets, but based on exclusive partition
of vertices. This arrangement results in some redundancy: some facet-facet matrix
elements are being computed several times, but only for facets near the boundaries
of buckets. However, because of the exclusive assignment of vertices, it guarantees
the absence of simultaneous store operations by different threads.

Finally, the matrix-vector multiplication also involves two main operations:

1 For basis functions associated with vertices; for basis functions supported on facets parallelization is trivial.
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(a) Computation of the near-field component of the matrix-vector product. Paralleliza-
tion of this task depends on whether the near-field matrix (stored in the sparse
row form) is symmetric or not. In the latter case (which arises in most types of
equations we are solving) parallelization is straightforward: the outer loop can be
taken to run through the matrix rows, i.e., the storage indices of the output vector.
Therefore, if this loop is split among the threads, each output address is handled
by one thread only.

There is no such simple solution in the case when the matrix is symmetric and only
its independent (say, upper-triangular) part is stored. It seems that in this situation
the optimal algorithm is to compute and store an additional list of matrix element
numbers, organized by columns rather than by rows. This scheme allows computing
the entire matrix-vector product in a loop through the output vector indices and,
at the same time, increases the matrix size only by 1/3, rather than doubling it, as
would be the case if the symmetric matrix were trivially stored as a nonsymmetric
one.

(b) Computation of the far-field contribution to the matrix-vector product. In this op-
eration the main computational cost is the three-dimensional fast Fourier transform
(FFT) performed on the sources or fields defined on the Cartesian grid covering the
object. That FFT is implemented as a set of iterated one-dimensional transform
taken in each of the three directions. The steps in the loops in which that transform
is executed can be simply split among the threads without causing any conflicts.

B.4 Some qualitative features of energy flow through high-contrast inter-
faces

Before discussing examples of computation, we give a short qualitative discussion of the ex-
pected behavior of the energy flow in our problems.

We first give a very elementary account of the acoustic reflection and transmission proper-
ties in wave propagation through a half-space and through finite-thickness layers. We consider
a one-dimensional problem of a layer of thickness a, filled with a material of density ρ and a
refraction coefficient n, surrounded by a background medium of density ρ0 and a unit refrac-
tion coefficient. The layer is subject to a plane wave propagating in the direction normal to
the its boundaries with the wave number k (in the background medium). The reflection and
transmission coefficients (for the pressure field) are then

Ra =
(1− ζ2) sin(nka)

(1 + ζ2) sin(nka) + 2 i ζ cos(nka)
(B.64a)

and

T a =
2 i ζ

(1 + ζ2) sin(nka) + 2 i ζ cos(nka)
e− i ka , (B.64b)

where
ζ :=

n ρ0
ρ

(B.65)

is the acoustic impedance of the considered material.
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For a “thin” layer, in the sense ζ ≪ nka≪ 1, the above expressions can be approximated
by

Ra = 1 +O
(
(nka)2, ζ2, ζ/(nka)

)
, T a = 2 i

ζ

nka

[
1 +O

(
(nka)2, ζ2, ζ/(nka)

)]
, (B.66)

while for a large layer thickness (more precisely, for Imnka≫ 1, allowing a complex n),

Ra ≍
1− ζ

1 + ζ
, T a ≍

4 ζ

(1 + ζ)2
e i (n−1) ka . (B.67)

For comparison, for a semi-infinite half-space filled with the same considered material, the
reflection and transmission coefficients are

R =
1− ζ

1 + ζ
, T =

2

1 + ζ
. (B.68)

of the pressure wave entering the medium, is not small.
The relative energy flux densities (Eqs. (B.4) or (B.6)) for the finite-thickness-layer and

half-space problems are, respectively,

F a = 1− |Ra|
2 ≡ |T a|

2 =





∣∣∣∣
2 ζ

nka

∣∣∣∣
2

(“thin” layer) ,

∣∣∣∣
4 ζ

(1 + ζ)2

∣∣∣∣
2

(“thick” layer)

(B.69a)

and

F = 1− |R|2 ≡ Re ζ |T |2 =
4Re ζ

|1 + ζ|2
. (B.69b)

Hence, the energy flux F a through the “thick” layer is (at least for real ζ) the square of the
flux F entering a half-space medium – due to the fact that the wave is being reflected on two
high-contrast interfaces.

B.5 Examples of energy flow computations

In this Section we discuss applications of the solver in modeling acoustic energy flow through
the human head and its transfer to the cochlea.

The most complete geometry model used consists of:

(1) the outer surface of the skin surrounding the skull and containing

(2) the outer ear represented by its exterior surface,

(3) the surface of the auditory canal,

(4) the tympanic membrane modeled as a finite-thickness surface;

(5) the middle ear, consisting of the system of ossicles and supporting structures;

(6) the skull, described by external surfaces of the bones constituting the skull and including
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(7) a set of surfaces representing the inner ear cavity (boundaries of the cochlea, the vestibule,
and the semi-circular canals).

In order to assess the relative importance of various mechanisms of the energy transfer,
we also discuss results of computations with modified or simplified models. In all geometry
models we assume typical approximate values of the relative densities and the refractive indices,
ρ/ρ0 = 1000 and n = 0.2 for the soft tissues, and ρ/ρ0 = 2000 and n = 0.4 for the bone. The
model is being subject to a pressure plane wave of unit amplitude, incident from the left side
of the head. The wavelengths λ given in the following are always the wavelengths in the air.

We first briefly characterize the models, and summarize the obtained results:

(A): A model of a homogeneous human head, filled with soft tissue. The computations in this
case illustrate the significance of the scaling of the operator matrix and vector blocks
in solving high-contrast transmission problems (Section B.2.4). We find that, in the
absence of rescaling, although the residual in the iterative solution decays approximately
exponentially, the slope is much smaller (in our examples 3 to 7 times, depending on
the frequency) than the slope in the solution of rescaled equations. Furthermore, the
solution of the non-rescaled equations converges to the correct solution only when very
small residual values (10−5 down to 10−7) are reached,2 and even then the resulting field
distributions exhibit speckle-type fluctuations.

(B): A model of an isolated skull, surrounded by air. The computations, involving a rather
complex skull structure, show the role of bone thickness in controlling the amount of
the energy transmitted through two high-contrast interfaces, air-to-bone and bone-to-
air. We also compare, for relatively low frequencies (wavelength λ = 1m) solutions
of the transmission problem to the solutions of the hard-surface (Neumann) and the
soft-surface (Dirichlet) problems; these problems serve as a verification of the soundness
of our solution procedures. We find, in agreement with intuitive expectations, that
the pressure in the Neumann problem tends to concentrate inside the skull cavity – in
analogy to the expected behavior of the temperature distribution in the equivalent heat-
conduction problem. On the other hand, the distribution of the velocity field in the
Dirichlet problem is concentrated on protruding elements of the surface, in analogy to
the charge distribution in the equivalent electrostatic problem.

(C): A model of a skull surrounded and filled with homogeneous soft tissue, with or without the
outer ear canal. Here we can establish some properties of energy flow in a more realistic
model with a rather intricate skull geometry, which includes the middle- and inner-ear
cavity, and in particular the cavity housing the cochlea. We stress, however, that in our
model we excluded the impedance-matching mechanism of the middle ear; hence, the
energy entering the outer ear canal can only propagate through the surrounding tissues,
and not through the usual air-conduction pathway.

As a quantitative measure of the effect of the acoustic waves arriving at the inner ear
through the head tissues, we compute the amount of energy flowing through the cochlea.
More specifically, we evaluate the quantity ΦS defined by Eq. (5.2) below as the average
absolute value of the energy flux density through the surface of the cochlear cavity,

2 Our computations are carried out in single precision.
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relative to the energy flux density of the wave incident on the head. According to
the estimate (B.69b) of the energy transmission through a high-contrast interface, the
computed relative flux density is expected to be of the order of the ratio of the densities
of the air and the tissues, i.e., ∼ 10−3.

The main results of the computations are that

- The relative energy flux density ΦS is, as expected, of the order 10−3 for large
wavelengths (λ larger than the head size) and, generally, decreases for smaller wave-
lengths.

- The presence of the outer ear canals increases the relative flux density by transport-
ing the energy deeper inside the head. This enhancement is by about the factor of
two at larger wavelengths (λ > 30 cm) and the factor of three for 10 cm < λ < 30 cm.
For wavelengths λ < 30 cm it exhibits a resonant behavior which, according to the
computations with the this the next model (D) can be attributed to the outer ear
canal.

(D): A model of homogeneous soft-tissue head, without the outer ear canals and without
the skull, but including the surface of the middle- and inner-ear cavity surfaces. We
carried out computations with this model in order to assess the significance of the sound
transmission through the bone vs. that through the soft tissues. As before, we compute
the average relative flux density ΦS through the surface of the cochlear cavity. We find
that for wavelengths λ & 10 cm removing the skull from the head filled otherwise with
soft tissue increases the flux by 10% to 30%. The results for smaller wavelengths indicate
a resonant-type behavior similar to that seen in the absence of the skull and therefore
attributable to the outer ear canal – the feature common to the two models.

B.5.1 Exterior head surface (A): rescaling in solution of high-contrast transmis-
sion problems

As an illustration of the conditioning problems encountered in high-contrast problems (Sec-
tion B.2.3), we discuss computations for a model of a homogeneous human head, assumed to
be filled with the soft tissue. The model discretization gives rise to N = 58, 062 unknowns.

In the first set of computations we assume the wavelength λ = 1m, corresponding to the
frequency about 300Hz. The resulting convergence histories for the original and rescaled sets
of equations (Eqs. (B.16) and (B.24)) are shown in Fig. 21.
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Figure 21: Convergence of the iterative solution to the transmission equations with the outer
head surface, for λ = 100 cm and the tissue density ρm/ρ0 = 1000: no rescaling (ξ = 1), and
rescaling with the factor ξ = 1/1000.

Fig. 22 shows the energy flux distributions computed from solutions to the original and
rescaled equations. Both solutions were obtained by iterating until the relative residual 10−7

was reached. At this very small residual value the energy fluxes are similar, but the distribution
for the original equations exhibits distinct speckle-type irregularities. Further, the solution to
the original equations approaches that for the rescaled equations only at this very low residual
level, while the rescaled equations provide an accurate solution already for the relative residual
of the order 10−3.

53



(a) (b)

Figure 22: Distribution of the energy flux density in a model of a human head filled with a
homogeneous tissue with ρm/ρ0 = 1000 and nm = 0.2, and for λ = 100 cm, obtained with
solutions to the original (a) and rescaled (b) equations, both for the relative residual 10−7.

We next consider a higher frequency, about 3 kHz, corresponding to the wavelength λ =
10 cm. In Fig. 23 we plot convergence histories for original and rescaled equations in this case.
It is seen that convergence of the rescaled equations is fairly independent of variations – within
a factor of about two – in the scaling parameter ξ.
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Figure 23: Convergence of the iterative solution to the transmission equations with the outer
head surface, for λ = 10 cm and the tissue density ρm/ρ0 = 1000: no rescaling (ξ = 1), and
rescaling with factors ξ = 1/500, ξ = 1/1000, and ξ = 1/2000.
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The energy flux distribution computed with rescaled equations is visualized in Fig. 24.
In this case the solutions to the original equations are close to those shown in the Figures
only provided the relative residual level ∼ 10−5 or better, while for the rescaled equations the
relative residual level ∼ 10−3 is entirely adequate.

(a) (b)

Figure 24: Distribution of the energy flux density in a model of a human head filled with a
homogeneous tissue with ρm/ρ0 = 1000 and nm = 0.2, and for λ = 10 cm, seen from two points
of view, (a) and (b).

For comparison, we plot in Fig. 25 the energy flux distribution for an even higher frequency
(λ = 5cm). It can be seen that it is more concentrated near the entrance to external ear canal,
even though the ear canal itself is not modeled in the considered geometry; hence, the effect
should be attributed to the shape of the auricle.
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(a) (b)

Figure 25: The same as Fig. 24, but for the frequency twice as high (λ = 5cm).

B.5.2 Energy flow in model of a human skull (B)

Here we show results of computations for a model of an empty human skull. We do not consider
this problem a realistic simulation of sound conduction in a human head, in which the skull is
both surrounded by soft tissues and filled with them. This fact has been recognized long ago
in the experimental work on bone conduction (e.g., [17, 18]); Nevertheless, it is of interest to
analyze the energy flow in an isolated skull, to compare it with the behavior of a more complete
model.

Our skull model is described by a triangular mesh with Nv = 112, 038 vertices (hence the
total number of unknowns is twice as large). The triangulation, shown in Fig. 26, is relatively
uniform: the minimum, average, and maximum values of the edge length are 0.07mm, 1.52mm,
and 4.62mm.

Fig. 27 shows the distribution of the pressure field on the surface of the model, for wave-
length λ = 1m, corresponding roughly to the frequency 300Hz.

As expected for a high-density material (nearly a hard surface), the pressure is of order
unity. As also expected for a nearly hard surface, the velocity is much smaller (Fig. 28).

The velocity distribution is seen to be concentrated in the area of the temporal bone, simply
because the bone is thinner in this region than elsewhere throughout the skull. The energy
flux, shown in Fig. 29, is also small and concentrated in the same area as the velocity field;
this is expected, since the distribution of pressure is quite uniform. The distributions of the
flux density in Figs. 29(a) and Figs. 29(b) show that energy enters the bone from the outside
and leaves through the inside surface.
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(a) (b)

Figure 26: Triangulation of the left half of the skull model, as seen from the interior side (a),
and a detail of the triangulation in the vicinity of the inner ear (b).

(a) (b)

Figure 27: Distribution of the absolute value of the pressure field the exterior (a) and interior
(b) surfaces of the left half of the skull.
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(a) (b)

Figure 28: Distribution of the absolute value of the velocity field the exterior (a) and interior
(b) surfaces of the skull.

(a) (b)

Figure 29: Distribution of the energy flux density on the exterior (a) and interior (b) surfaces
of the skull. Positive/negative values indicate energy entering/leaving the bone.

For comparison with solution to the high-contrast transmission problem, we show in Fig. 30
the solution for the pressure field for the hard-surface (Neumann) problem. While the pressure
on the outer surface (Fig. 30(a)) of the hard-surface skull is comparable to that in the trans-
mission model, it is much (about 10 times) larger in the interior of the skull cavity (Fig. 30(b)).
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This phenomenon can be intuitively understood by invoking the equivalence of the acoustic
Neumann problem to the problem of steady-state heat transport in the presence of insulating
boundaries, in which the pressure becomes the temperature, the Neumann boundary condition
∂p/∂n means zero energy flow through the boundary, and the incident plane wave plays the
role of an external energy source. The “physical intuition” suggests then that the heat should
be trapped in cavities.

The above comparison emphasizes the difference between the hard-surface problem and
a transmission problem, even with a very large density contrast, hence small energy fluxes
through the interfaces: even a small energy flow through the surfaces prevents its accumulation
in a cavity.

As another comparison, Fig. 31 shows the distributions of the velocity field in the soft-
surface (Dirichlet) problem. It is, of course, very different from the distribution in the trans-
mission problem in Fig. 28, and (in agreement with the expected solution of the equivalent
electrostatic problem) it exhibits maxima at pointed elements of the surface.

(a) (b)

Figure 30: Distribution of the absolute value of the pressure field on the exterior (a) and
interior (b) surfaces of the skull modeled as a hard surface (Neumann boundary conditions).
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(a) (b)

Figure 31: Distribution of the absolute value of the velocity field on the exterior (a) and interior
(b) surfaces of the skull modeled as a soft surface (Dirichlet boundary conditions).

Finally, Fig. 32 displays some details of the energy flux distribution on surfaces in the area
of the temporal bone. It can be seen here that the increased energy flow through the outer
shell of the skull is related to the small bone thickness. One can also see the cochleas (as
cavities in the bone). As indicated by the Figures 32, and in more detail in Fig. 33, the energy
flow through the cochlea is directed from the inside to the outside of the skull.
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(a) (b)

Figure 32: Distribution of the energy flux density in the area of the left temporal bone, seen
from the back and outside (a) and inside (b) of the skull.

Figure 33: Distribution of the energy flux density in the area of the left temporal bone,
including the outer auditory canal, and the middle and inner ear structures.

61



B.5.3 Energy flow in a model of a human head with skull and soft tissues (C)

We discuss here some results obtained with a model of a human head consisting of a skull
embedded in undifferentiated soft tissues filling the outer “skin” boundary. In this model the
head surface includes the outer ear canals terminated with a flat disc-shaped surfaces modeling,
approximately, the tympanic membranes. A part of the model is visualized in Fig. 10(a). The
triangulation used in the geometry results in about 260, 000 unknowns. Most of the reported
computations were done at the frequency of about 6 kHz, corresponding to the wavelength
λ = 5cm.

For comparison, we also carried out a number of computations with a head model without
the outer ear canals. This model can be considered a realization of a perfect ear-plug, with which
the outer auditory canal is effectively closed. We start with discussing results of computations
with this model.

Head surface without the outer ear canal. The outer surface of the head is in this case
described by the same model as in Figs. 21 and 23. Fig. 34 shows the resulting density of the
energy flux through the surfaces of the model. The energy flux distribution on the exterior
(skin) surface is nearly the same as in the model without the skull (Fig. 25(a)). A coronal
cross-section through the model is shown in Fig. 25(b). The cross-section plane intersects the
outer auditory meatus and the cochlea (a cavity in the skull bone). Further details of the
vicinity of the left meatus and the cochlea are shown in Fig. 35, in which the range of the flux
density has been reduced to [− 0.001, 0.001] (we recall these values are relative to the incident
flux density). The boundary of the cochlea is visible near the right edge of Fig. 35(a), which
presents the view from the back and the left of the head. Fig. 35(b) – the view from the right
– shows positive values of the energy flux, approximately 0.0002, on the right boundary of the
cochlea. Those values indicate that the energy flows flows from the cochlea (a cavity) into
the bone. Similarly, the negative flux values on the opposite side of the cochlea show energy
flowing out of the bone and into the cochlea. The overall energy flow through the cochlea is
this from left to right.
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(a) (b)

Figure 34: Distribution of the energy flux density in a model of head involving soft tissues and
the skull: energy flux through the exterior surface (a) and through the interior interfaces (b).
The latter shows a cross-section of the head, seen from the back and right side.

(a) (b)

Figure 35: Details of the energy flux density distribution of Fig. 34.

Head surface with the outer ear canal. The following computation were carried out with
the full head model, including the outer ear canal and, as before, the skull (Fig. 10(a)).

The significance of the outer auditory canal in air-conducted sound transmission is obvious.
However, the results given below also indicate that the outer ear canal plays an important role
in transporting the sound energy into the interior of the skull, and that a relatively large
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amount of energy transmitted through the tissues emanates from the wall of the canal. Those
phenomena are illustrated by the pressure, velocity, and energy flux distributions shown in
Figures 36 and 37. The values of the energy fluxes are now significantly (by a factor of 10
or more) larger than in the previous model. An interesting feature is that in different parts
of the canal the energy flows from the air into the tissue or in the opposite direction. Such
pressure, velocity, and energy flux distributions are characteristic of a standing acoustic wave
being formed in the ear canal [3]; consequently, these distributions change with the frequency
(as confirmed by the computations).

The following Figures 36 and 37 show the distributions of the pressure and velocity fields,
and the energy flux density in the region of the left temporal bone.

(a) (b)

Figure 36: Distributions of the absolute value of the pressure (a) and velocity (b) fields, |p(r)|
and |q(r)|, on the material interfaces in the vicinity of the left temporal bone, for λ = 5cm.
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(a) (b)

Figure 37: Distribution of the relative energy flux density, F (r) of Eq. (B.6), on the interfaces
in the vicinity of the left temporal bone, in a wider (a) and a smaller (b) regions, for λ = 5cm.

Some features observed in the solution are as follows:

1. The outer auditory canal supports a standing wave with a node in pressure at about
half-length of the canal (Fig. 36(a)). By examining the real and imaginary parts of the
solution one can see that the pressure changes sign at that point.

2. The pressure p and the velocity field q (i.e., the velocity component normal to the walls
of the canal, not the longitudinal velocity) has a more complex behavior and is not simply
related by a proportionality constant (interface impedance).

3. As a consequence, the direction of the energy flow through the walls of the outer auditory
canal changes sign along its length.

As the wavelength increases, the behavior of the pressure and velocity inside the outer
auditory canal has no longer a wave character. Nevertheless, the fields and the energy flux
are still largely concentrated inside the canal. The behavior of the resulting energy flux for
λ = 60 cm is illustrated in Fig. 38.
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Figure 38: Distribution of the relative energy flux density F (r) on the interfaces in the vicinity
of the left temporal bone for λ = 60 cm.

Energy flow through the cochlea. Based on the solutions for the two head models, we
compare now the amounts of energy flowing through the inner ear (more specifically, the surface
of the cavity housing the cochlea). As a quantitative measure of that energy, we consider the
integral of the absolute value of the average energy flux density over the surface S of the
cochlear cavity,

ΦS :=
1

|S|

∫

S

d2r |F (r)| , (B.70)

where |S| is the area of the surface. (We recall that, since the energy is conserved the total
energy flux through a closed surface is zero – a property satisfied also, to a good accuracy, by
the numerical solution.)

In computing the flux density (5.2) we use the surface S shown in Fig. 39 or a similar one.
The surface is open: one of its boundaries opens into the vestibule, and the other to canal
containing the cochlear nerve (which then passes through the inner meatus); the solution for
the pressure and velocity fields is, of course, always computed with closed surfaces separating
various materials.
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(a) (b)

Figure 39: Discretized surface S of the skull cavity containing the left cochlea, used in the
computing the energy flux ΦS , seen from the front (a) and from the back (b) of the head. The
average edge length in the discretization is about 1mm. The dark interior of the surface is the
outer side of the bone surface.

Fig. 40 shows the average relative energy flux (5.2) as a function of the wavelength of the
incident wave. At larger wavelengths the presence of the outer auditory canal increases the
energy flux by about a factor of two. At smaller wavelengths the effect is larger and exhibits
a resonant behavior. The first, sharper, peak at λ ≈ 5 cm is likely to be due to a resonance in
the outer ear canal. The origin of the broader maximum at λ ≈ 15 cm is less clear. One might
speculate that it is related to vibrations of the entire skull or head; but, since it is absent in
the model without the auditory canal, those vibrations would have to be excited specifically
by the energy transported to the interior of the head.
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Figure 40: The average energy flux density through the surface of the cochlear cavity (relative
to the incident wave flux density), as a function of the wavelength, for the model with the skull
and soft tissues.

In order to assess the sensitivity of the energy flux ΦS on the details o the inner ear, we
carried out computations for three different geometries. The results, for the model of the head
with the ear canals, shown in Fig. 41, indicate that the differences are minor.

Figure 41: The average energy flux density through the surface of the cochlear cavity (relative
to the incident wave flux density), as a function of the wavelength, for the model with the skull
and soft tissues and three geometries (g1, g2, g3) of the inner ear cavity.

In order to correlate the observed resonant-type of the energy flux with the spatial flux
distribution, we plot in Fig. 42 the flux density on the surface of the cochlear cavity, for a set of
selected frequencies. The plots represents the left cochlea, subject to a sound wave incident on
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the left ear, and seen from the front of the head. The positive and negative flux values indicate
the energy flowing into and out of the bone surrounding the cochlea. Hence, for example, the
distribution at λ = 3cm indicates that the energy flows from the right to the left, i.e., from
the outside to the inside of the head. However, the energy flow changes its direction twice,
between the wavelengths 3 cm and 4 cm, and again between 12 cm and 14 cm.

λ = 3cm λ = 4cm λ = 6cm λ = 8cm
[−0.00093, 0.00048] [−0.00055, 0.00086] [−0.0015, 0.0030] [−0.00040, 0.00082]

λ = 10 cm λ = 12 cm λ = 14 cm λ = 20 cm
[−0.00074, 0.0015] [−0.0023, 0.0046] [−0.0053, 0.0034] [−0.0025, 0.0016]

λ = 30 cm λ = 40 cm λ = 60 cm λ = 80 cm
[−0.0017, 0.0011] [−0.0019, 0.0012] [−0.0027, 0.0017] [−0.0031, 0.0020]

Figure 42: Distributions of the energy flux density on the surface of the left cochlear cavity
(geometry g1) seen from the front, for a model of a head with the outer ear canals, and for
the indicated wavelengths λ. Ranges of variation of the relative flux density F (r) are shown
in the square brackets.
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λ = 3cm λ = 4cm λ = 6cm λ = 8cm
[−0.00093, 0.00046] [−0.00057, 0.00088] [−0.00050, 0.0012] [−0.00032, 0.00080]

λ = 10 cm λ = 12 cm λ = 14 cm λ = 20 cm
[−0.00058, 0.0015] [−0.0019, 0.0047] [−0.0054, 0.0031] [−0.0025, 0.0014]

λ = 30 cm λ = 40 cm λ = 60 cm λ = 80 cm
[−0.0018, 0.00097] [−0.0019, 0.0011] [−0.0028, 0.0018] [−0.0031, 0.0022]

Figure 43: The same as Fig. 42, but for a more detailed model of the inner ear cavity (ge-
ometry g2), without the skull and with the outer ear canals, filled with the tissue of density
ρ/ρ0 = 1000. Discretization of the cochlear cavity is somewhat different than in the previous
computation.
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λ = 3cm λ = 4cm λ = 6cm λ = 8cm
[−0.00086, 0.0007] [−0.00066, 0.00085] [−0.00085, 0.0012] [−0.00048, 0.00073]

λ = 10 cm λ = 12 cm λ = 14 cm λ = 20 cm
[−0.00099, 0.0014] [−0.0034, 0.0044] [−0.0051, 0.0042] [−0.0024, 0.0020]

λ = 30 cm λ = 40 cm λ = 60 cm λ = 80 cm
[−0.0017, 0.0015] [−0.0018, 0.0016] [−0.0026, 0.0024] [−0.0030, 0.0026]

Figure 44: The same as Fig. 42, but for an even more detailed model of the inner ear cavity
(geometry g3), without the skull and with the outer ear canals, filled with the tissue of density
ρ/ρ0 = 1000. Discretization of the cochlear cavity is somewhat different than in the previous
computation.

By looking at the flux distributions on the inner ear cavity and the outer ear canal we
can verify that the sudden changes in the direction of the energy flow are are due to changes
of the field distributions in the outer ear canal near resonances seen in Figs. 40 and 41. As
an example, we plot in Figs. 45 flux distributions on the middle- and inner-ear cavity for
wavelengths 12 cm (a) and 14 cm (b).

The above observations are supported by the fact that in the model without the outer
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auditory canals, and thus in the absence of noticeable resonances, the energy flow is, at all the
considered wavelengths, directed from the outside to the inside of the skull.

(a) (b)

Figure 45: Energy flux density distributions on the left middle- and inner-ear cavity for wave-
lengths 12 cm (a) and 14 cm (b), seen from the top. The canal directed to the left and up is
the inner meatus.

(a) (b)

Figure 46: Energy flux density distributions on the left outer ear canal for wavelengths 12 cm
(a) and 14 cm (b), seen from the front.

B.5.4 The role of acoustic bone conduction: energy flow in the absence of a skull
(D)

In order to assess the significance of bone conduction vs. soft-tissue conduction, we also com-
puted the amount of energy flowing through the cochlea in a model of the human head filled
entirely with a homogeneous material, without the skull structure. In this comparison we
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considered two models of the outer head surface: without outer ear canals (i.e., with “perfect
ear-plugs”) and with ear canals.

Head surface without outer ear canals. We consider here two cases: the head filled with
the soft tissue (ρ/ρ0 = 1000, n = 0.2) and the bone (ρ/ρ0 = 2000, n = 0.4). We then solve
the resulting transmission problems with the outer head surface (the “skin”) and a part of
the middle- and inner-ear ear cavity, including the cochlear cavity. Finally, we compute the
average energy fluxes (5.2) through the same part S of the cochlea cavity surface as used before
(Fig. 39). The results are shown in Fig. 47, together with the previous plot of Fig. 40 for the
model without the outer ear canal, but with the skull.

Figure 47: The average relative energy flux density through the the cochlear cavity as a
function of the wavelength, for the model without the skull and two tissue densities ((b) and
(c)), compared to the result for the reference model (a) with the skull. In this model the head
surface model has no outer ear canals.

The relations between the fluxes for larger wavelengths can be plausibly explained:

- Comparison of the models (a) and (b) indicates that the presence of the higher-density
skull in the soft tissue may reduce the energy flux due to its transmission through addi-
tional interfaces.

- Reduction of the flux in the model (c) compared to (b) (by about a factor of two) may
be simply attributed to the higher density contrast in (c).

On the other hand, we find it difficult to explain in an intuitive way the behavior of the
energy flux for wavelengths λ . 10 cm, especially for the higher-density model. As an example,
we computed distributions of the pressure and velocity fields, as well as the energy flux density
on the surface of the head model (c), for two wavelengths, λ = 6cm and λ = 7cm, for which
the average flux densities ΦS (Fig. 47) are about 6.5 · 10−5 and 3.5 · 10−4. The pressures for
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the two wavelengths are quite similar, but the velocities for λ = 7cm are significantly larger
on most of the head surface than for λ = 6cm. As a result, the flux density for λ = 6cm is
more concentrated near the center of the outer ear, but for λ = 7cm it is more spread over the
head surface and overall larger. This fact appears to indicate that the larger value of the flux
ΦS for λ = 7cm is due to energy penetrating through a large area of the head surface, rather
than through the vicinity of the ear.

At the same time, the wavelength-dependence of the flux for the model (b) – with the
density ρ/ρ0 = 1000 – is much more smooth, due to a more smooth dependence of the velocity
field, but we cannot offer an explanation of that fact. Generally, we find that, as expected for
the large-contrast problems, the behavior of the pressure distribution is nearly independent
of the density and relatively weakly dependent on the wavelength; however, the velocity-field
distribution, and thus the energy flux, vary with both the wavelength and the density in ways
difficult to predict.
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|p(r)| |p(r)|

|q(r)| |q(r)|

F (r) F (r)
λ = 6cm λ = 7cm

Figure 48: Distributions of the pressure and velocity fields, and of the energy flux density on
the outer surface of head for λ = 6cm (left column) and λ = 7cm (right column), for the
model without the skull and with ρ/ρ0 = 2000, n = 0.4.
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While the above discussion pertains to the energy flux on the outer surface of the head,
the energy flux distributions on the cochlear cavity for several wavelengths and for the two
considered materials are shown in Figs. 49 and 50. The distributions for the two materials
are similar and show that, except for the first entries, the energy flux grows monotonically
with the wavelength and becomes more uniform. We recall that the Figures represents the
left cochlea, subject to a sound wave incident on the left ear, and seen from the front of the
head. The positive and negative flux values indicate the energy flowing into and out of the
bone surrounding the cochlea cavity; hence, the energy flux distributions show that the energy
is flowing from the inside to the outside of the head – a phenomenon observed also, for some
wavelengths, in the full model with the skull (Fig. 42). Again, this behavior appears to be
difficult to explain intuitively without performing the actual computation.
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(a) λ = 5cm (b) λ = 10 cm

(c) λ = 20 cm (d) λ = 40 cm

(e) λ = 60 cm (f) λ = 80 cm

Figure 49: Distributions of the energy flux density on the surface of the left cochlea cavity, seen
from the front, for a model of a head without the skull and with the tissue density ρ/ρ0 = 1000.
The distributions are shown in varying scales for a number of wavelengths, from λ = 5cm to
λ = 80 cm.
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(a) λ = 5cm (b) λ = 10 cm

(c) λ = 20 cm (d) λ = 40 cm

(e) λ = 60 cm (f) λ = 80 cm

Figure 50: The same as Fig. 49, but for a the tissue density ρ/ρ0 = 2000.
The distributions are shown in varying scales.
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Head surface with outer ear canals. In this problem we also consider the reference full
head model with the soft tissue and the bone (a), and compare it with skull-less heads filled
with either of the two materials (models (b) and (c)). The results for the average energy flux
density on the cochlear cavity are shown in Fig. 51.

Figure 51: The average relative energy flux density through the the cochlear cavity as a
function of the wavelength, for the model without the skull and two tissue densities ((b) and
(c)), compared to the result for the reference model (a) with the skull. Here the head surface
model contains outer ear canals.

Again, for λ & 10 cm the flux densities in the the three models differ by less than about
30% and the relations between them can be explained as in the previous problem. For smaller
wavelengths we observe a close agreement of the models (a) and (b), but the model (c) continues
to exhibit more resonance-type structure.

Now, since the skull-less model (at least for the density ρ/ρ0 = 1000) yields a flux density
behavior closely similar to the model with the skull, it is also of interest to analyze the flux
density distribution on the cochlear cavity – as shown, for the full model, in Fig. 42. The
results for the present model (with a somewhat different cavity discretization) are visualized
in Fig. 52.
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λ = 3cm λ = 4cm λ = 6cm λ = 8cm
[−0.00011, 0.00013] [−0.0011, 0.0025] [−0.0011, 0.00062] [−0.00083, 0.00048]

λ = 10 cm λ = 12 cm λ = 14 cm λ = 20 cm
[−0.0017, 0.00095] [−0.0060, 0.0035] [−0.0029, 0.0076] [−0.0017, 0.0035]

λ = 30 cm λ = 40 cm λ = 60 cm λ = 80 cm
[−0.0012, 0.0024] [−0.0014, 0.0026] [−0.0023, 0.0040] [−0.0028, 0.0046]

Figure 52: The counterpart of Fig. 42, now for a head model without the skull and with the
outer ear canals, filled with the tissue of density ρ/ρ0 = 1000. Discretization of the cochlear
cavity is somewhat different than in the previous computation.

We observe a remarkable correlation between the distributions in Figs. 42 and 52. In
both cases the energy flux through the cochlea changes direction in the resonance region.
Interestingly, however, the directions of the energy flow in the two models are almost exactly
opposite throughout the entire wavelength range! On the basis of this comparison we conjecture
that

- The resonant behavior of the flux at smaller wavelengths is independent of the presence
of the skull, and is thus due to the outer ear canals.
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- The overall magnitude of the energy flux inside the model is primarily controlled by the
outer model surface and is fairly independent of the skull.

- The skull, however, affects the local distribution of the flux, possibly through reflections
from the interfaces between the bone and the soft tissue.

B.5.5 Summary of the results on energy flow

The main findings of our analysis on energy flow through the human head can be summarized
as follows:

1. Transmission problems involving multi-region systems of the types listed above can be
accurately solved by means of either first- or second-kind equations. Expectedly, second-
kind equations have a certain advantage in terms of better conditioning and thus a smaller
number of iterations in the solution.

2. Solution for the pressure on the exterior air-tissue interface is insensitive to the interior
regions of the model. Actually, the pressure on that surface can be well approximated
by the solution of a simpler hard-surface scattering (Neumann) problem.

3. The value of the normal derivative of the pressure on the exterior surface depends pri-
marily on the density of the tissue adjacent of the surface, but it is also more sensitive
to the materials and the geometry of the interior of the model.

4. We have observed some interesting features of the distributions of the pressure and its
normal-derivative on the exterior high-contrast interface, and the corresponding fea-
tures of the energy flux through the surface. As we discuss below, our problem of a
high-contrast interface involves features of both the hard-surface (Neumann boundary
condition) and soft-surface (Dirichlet boundary condition) problems.

(a) The pressure p tends to be concentrated in depressions and indentations of the
surface, in particular in canals penetrating inside the object (including the outer
auditory meatus). Intuitively, this behavior is expected by analogy with the tem-
perature distribution in heat transport in the presence of an insulating boundary –
formally, a problem identical to acoustic scattering off a hard (Neumann condition)
surface.

(b) At the same time, the normal derivative of the pressure, ∂p/∂n, tends to concen-
trate at protruding elements of the surface. Again, this behavior can be intuitively
understood by analogy with the distribution of the charge density distribution on
the surface of a conductor, described by the Laplace equation with the Dirichlet
boundary conditions.

5. We found that the distributions of p and ∂p/∂n depend in very different ways on the
surface geometry, hence the behavior of the their product (i.e., the energy flux) may be
highly nontrivial and difficult to predict without an actual computation. In particular,
the behavior of the energy flux in the vicinity of the outer ear canal suggests that a
significant part of the non-airborne sound transmission may come from this area.
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6. The comparison of the results of models with and without outer ear canals (with the latter
model representing effects of “perfect ear-plugs”) shows that at relatively high frequencies
(the wavelengths . 15 cm) a large part of the non-air-borne energy transfer to the inner
ear is due to the resonant behavior of the wave in the outer ear canals. This contribution
to the energy flux can be significantly reduced by blocking the ear canals. However, as
the frequency decreases, the contribution of the energy penetrating through the surfaces
of the head and the skull becomes dominant; and this energy-transfer mechanism can
only be suppressed by protecting the entire surface of the head.
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C Draft of the paper
“Formulation and Applications of the First and the Second

Kind Elastodynamics Integral Equations in Simulation of
Elastic Wave propagation in Human Head

(part 1)”

E. Bleszynski, M. Bleszynski, and T. Jaroszewicz

Monopole Research, Thousand Oaks, CA 91360

Abstract

We present formulation and selective applications of the boundary integral method
formulation in elastodynamics applicable to a general multi-domain object composed of
piecewise homogeneous material regions characterized by distinct Lamé material parame-
ters. The most exterior region may have exclusive acoustic properties.

The constructed integral equation solver offers a versatile numerical simulation frame-
work providing high accuracy, ease of treating high-contrast interfaces and material proper-
ties, essential in modeling intricate geometrical structures with complex biological material
properties present in the area of human middle and inner ear.

C.1 Introduction

We present elements of the formulation and implementation of the elastodynamics integral
equation solver applicable to a general problem involving an object composed of a number
of domains characterized by different Lamé material parameters. The resulting formulation
consists of a coupled set of surface integral equations, for two unknown surface vector fields:
displacement u(r), and the traction t(r) fields. The discrete representation of the integral
equations is constructed by expanding the displacement u and traction t fields on material
interfaces in terms of piecewise linear basis functions supported on sets of triangular facets
sharing a common vertex. We have constructed two different versions of integral equations:
(a) in the first-kind form and (b) in the second-kind form, for the displacement and traction
fields expanded in terms of the linear node-based basis functions. We constructed explicit,
numerically stable expressions for Galerkin matrix elements, of all pertinent kernels appearing
in both types of integral equations for solid-solid, fluid-solid, and fluid-fluid material interfaces.

In order to be able to handle the large scale realistic numerical simulations we interfaced the
solver with a suitable FFT-based matrix compression algorithm which reduces the numerical
complexity of the iterative solution to N logN . The choice of the compression method is
motivated by its efficiency in treatment of subwavelength problems present at frequencies
associated with typical external acoustic excitation. The parallelization scheme for the matrix-
compressed version of the elastodynamics integral equations has been developed as well.

C.2 Lamé differential equations

We start with the Lamé equation for the displacement in elastic medium characterized by
Lamé coefficients λ and µ The displacement u(r) and the stress tensor τ̂(r)

τ̂(r, ω) = λÎ∇r · u(r) + µ[∇r ⊗ u(r, ω) + u(r, ω)⊗∇r]
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satisfy the following equations

{(λ+ µ)∇x ⊗∇x + µ∇2
x + ρω2}u(x, ω) = ρ(x)F (x, ω),

∇x · τ̂(x, ω) + ρ(x)ω2u(x, ω) = −ρ(x)F (x, ω),
(C.1)

The Green function of the Lamé equation is the second rank symmetric tensor

Ĝ(R) = C(R)Î +∇R ⊗∇RD(R)

C(R) =
1

µ
gS(R),

D(R) =
1

µk2S
[gS(R)− gC(R)],

(C.2)

with

R = x− y.

gC(R) =
eikCR

4πR
,

gS(R) =
eikSR

4πR
,

∇
2
RgC(R) = −k2CgC(R)− δ(R),

∇
2
RgS(R) = −k2SgS(R)− δ(R),

∇
2
RD(R) =

1

µk2S
[k2CgC(R)− k2SgS(R)],

1

ρω2
k2CgC(R) =

k2C
k2S
C(R)− k2CD(R),

∇R · Ĝ(R) =
k2C
µk2S

∇RgC(R) =
1

λ+ 2µ
∇RgC(R),

(C.3)

We define the stress tensor

τ̂(y) = λÎ∇y · u(y) + µ[∇y ⊗ u(y) + u(y)⊗∇y],

τ̂ij(y) = Cijkm∂kum(y),

Cijkl = λδijδkl + µ(δikδjl + δilδjk),

(C.4)

The two wave-numbers,

kC =
ω

cC
, kS =

ω

cS
, (C.5)

are related to the longitudinal (compressional) and transverse (shear) wave speeds as follows

cC =

√
λ+ 2µ

ρ
, cS =

√
µ

ρ
. (C.6)
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Γ̂ (x,y) = n̂(y) · Σ̂(R),

Γij(x,y) =
∂

∂yq
Gip(x− y)Cjkpqnk(y) = {n̂(y) · Σ̂(x− y)}ij = ni(y)Cijml∂mGlk(R),

Σ̂(R)] = λÎ∇ · Ĝ(R) + µ∇⊗ Ĝ(R) + µĜ(R)⊗∇,

[Σ̂(R)]ijk = λδij∂mGmk(R) + µ[∂iGjk(R) + ∂jGik(R)] = Cijml∂mGlk(R),

Γjk(x,y) = ni(y)Σijk,

Φjk(x,y) = Σijkni(x)

Σ̂(R) = −Σ̂(−R).

(C.7)

The Green tensor functions Ĝ(R) and Σ̂(R) satisfy the following equations

[(λ+ µ)∇R ⊗∇R + µ∇2
R + ρω2]Ĝ(R) = −δ(R)Î ,

∇R · Σ̂(R) + ρω2Ĝ(R) = −δ(R)Î ,

Σ̂(R) ·∇R + ρω2Ĝ(R)− λ(∇R · −∇R⊗)∇R · Ĝ(R) = −δ(R)Î ,

∂i[Cijkl∂kĜlm(R)] + ρω2Ĝjm(R) = −δjmδ(R),

∂i[Σ̂ijm(R)] + ρω2Ĝjm(R) = −δjmδ(R),

∇R · Ĝ(R) =
1

λ+ 2µ
∇RgC(R),

(C.8)

while τ̂(x) satisfies the following equation

ρ(r)ω2u(r) = 0,

1
2 [∇r ⊗ u(r) + u(r)⊗∇r]− ˆ̂τkl(r) = 0,

(C.9)

where

Cijkl = λδijδkl + µ(δikδjl + δilδjk)

Dijkl =
1

4µ

[
(δikδjl + δilδjk)−

2λ

3λ+ 2µ
δijδkl

]
=

=
1

4µ

[
1

µ
Cijkl −

λ

µ
δijδkl −

2λ

3λ+ 2µ
δijδkl

]
=

Cijkl = Cjikl = Cijlk = Cklij.

(C.10)

is the 4-th rank elastic stiffness tensor. A useful relation is

Cijkl∂kul(x)∂iGjm(R)− Cijkl∂iuj(x)∂kGlm(R) = 0. (C.11)

C.3 Representation formulae in elastodynamics

C.3.1 Representation formulae for the displacement field

We consider a single region Ω bounded by ∂Ω containing homogeneous material with Lamé
parameters λ and µ (see Fig. 53. By assuming that, inside Ω the displacement u(x) satisfies
the Lamé equation (C.14)
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Figure 53: A region Ω ≡ Ωm separated by ∂Ω in Ω0 used in the derivation of the integral
representation for u.

The integral representations for the displacement and traction fields inside and a
region Ω can be derived by applying the of Gauss divergence formula to the equations satisfied
by the Green tensor functions Ĝ(R) and Σ̂(R) for a single frequency ω:

∇y · τ̂(y) + ρω2u(y) = −ρ(y)F (y),

∇y · Σ̂(y,x) + ρω2Ĝ(y,x) = −δ(y − x)Î ,
(C.12)

By multiplying the first of the above equations by Ĝ(x,y) from the right side and by
multiplying the second by u(x) from the left side and by subtracting them we obtain

[∇y · τ̂(y)] · Ĝ(y,x)− u(y) · [∇y · Σ̂(y,x)] = u(y)δ(y − x)− ρ(y)[F (y) · Ĝ(y,x)], (C.13)

But

∇y · {τ̂(y) · Ĝ(y,x)} − u(y) · Σ̂(y,x)]} = [∇y · τ̂ (y)] · Ĝ(y,x)− u(y) · [∇y · Σ̂(y,x)]+

+[τ̂(y)] · ·[∇y ⊗ Ĝ(y,x)]− [∇y ⊗ u(y)] · ·[Σ̂(y,x)]

(C.14)

where ˙̇ denotes contraction in the first two indices,
Also,

Σ̂(x− y) = −Σ̂(y − x),

Ĝ(x,y)] = Ĝ(y,x),

∇y · Ĝ(y,x)] = −∇x · Ĝ(y,x),

(C.15)

and

[∇y ⊗ u(y)] · ·[Σ̂(y,x, ω)]− [τ̂(y)] · ·[∇y ⊗ Ĝ(y,x)] = 0 (C.16)

Let us verify the above identity in the indicial notation

∂uj
∂yi

Σ̂ijk(y,x)− τ̂ij(y)
∂Ĝjk(y,x)

∂yi
=
∂uj
∂yi

Cijmn
∂Ĝnk(y,x)

∂ym
− Cijmn

∂un
∂ym

∂Ĝjk(y,y)

∂yi
=

=
∂un
∂ym

Cmnij
∂Ĝjk(y,x)

∂yi
− Cijmn

∂un
∂ym

∂Ĝjk(y,x)

∂yi
= 0

(C.17)
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We may now rewrite (C.14) as follows

= ∇y · {τ̂(y) · Ĝ(x,y) + u(y) · Σ̂(x,y)]} = u(y)δ(x − y)− ρ(y)[F (y) · Ĝ(x,y)], (C.18)

By taking the volume integral of the above equation we obtain and by applying the Gauss
divergence formula we may convert left side to the surface integral

∫

Ω

dV∇y · {τ̂ (y) · Ĝ(x,y) + u(y) · Σ̂(x,y)} =

=

∫

∂Ω

dSy{[n̂(y) · τ̂(y)] · Ĝ(x,y) + [u(y) · n̂(y) · Σ̂(x,y)]} =

=

∫

∂Ω

dSy{t(y) · Ĝ(x,y) + u(y) · Γ̂ (x,y)}

(C.19)

We obtain the integral representation for the displacement field for a region Ω bounded by ∂Ω
which allows to to find the value of the displacement field at any point x in Ω in terms of the
integral of 2 fields u(x) and t(x) on the region boundary for u(x)

∫

∂Ω

dSy
[
t(y) · Ĝ(x,y) + u(y) · Γ̂ (x,y)

]
=




u(x) for x /∈ Ω,

0 for x ∈ Ω.

t(y) = n̂(y) · τ̂(y),

Γ̂ (x,y) = n̂(y) · Σ̂(x,y),

(C.20)

The symbols appearing in the integrand of the above integral representations are as follows

• u(y) is the displacement vector field

• t(y) is the traction vector field related to the stress tensor τ̂(y) as follows

t(y) = n̂(y) · τ̂(y) =

= λn̂(y)[∇y · u(y)] + µ{[n̂(y) ·∇y]u(y) +∇y[n̂(y) · u(y)]},
(C.21)

• Ĝ(x − y) is a second rank symmetric tensor, the Green function of the Lamé equation
given by (C.2)

• Γ̂ (x,y) is a second rank non-symmetric tensor, related to

• Σ̂(x), a third rank stress tensor (symmetric in first 2 indices)

C.3.2 Representation formulae for the traction field

In this section we construct the representation formulas for the traction field which we will
use in the context of first kind of integral integral equation formulation. We consider a single
region Ω bounded by ∂Ω By assuming that, inside Ω the displacement u(x) satisfies the Lamé
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equation (C.14) we may construct the integral representations for the traction fields
inside and a region Ω. We obtain the integral representation for the displacement field for a
region Ω bounded by ∂Ω which allows to to find the value of the displacement field at any
point x in Ω in terms of the integral of 2 fields u(x) and t(x) on the region boundary

∫

∂Ω

dSy
[
t(y) · Φ̂(x,y) + u(y) · Ŵ (x,y)

]
=




t(x) for x /∈ Ω,

0 for x ∈ Ω+.

t(y) = n̂(y) · τ̂(y),

Γ̂ (x,y) = n̂(y) · Σ̂(x,y),

(C.22)

where Ω+ denotes the position locate d just above the surface Ω.
In order to construct the above integral representation for the traction field outside

region Ω bounded by ∂Ω we applying the traction field operator to the integral representation
for displacement u(x)

τ̂ [u(x)] = λÎ[∇x · u(x)] + µ[∇x ⊗ u(x) + u(x)⊗∇x] =

= τ̂
{∫

∂Ω

dSy
[
u(y) · Γ̂ (x,y) + t(y) · Ĝ(x,y)

]}

=

∫

∂Ω

dSy
[
τ̂ [u(y) · Γ̂ (x,y)] + τ̂ [t(y) · Ĝ(x,y)]

]

τ̂ [u(y) · Γ̂ (x,y)] = λÎ∇x · [u(y) · Γ̂ (x,y)] + µ∇x ⊗ [u(y) · Γ (x,y)] + µ[u(y) · Γ (x,y)]⊗∇x

τ̂ [t(y) · Ĝ(x,y)] = λÎ∇x · [t(y) · Ĝ(x,y)] + µ∇x ⊗ [t(y) · Ĝ(x,y)] + µ[t(y) · Ĝ(x,y)]⊗∇x

(C.23)

The contributions to traction field components associated with the last 2 terms of (C.57) are

n̂(x) · τ̂ [u(y) · Γ̂ (x,y)] = u(y) · Ŵ (x,y) =

= λn̂(x){∇x · [u(y) · Γ̂ (x,y)]} + µ[n̂(x) ·∇x][u(y) · Γ̂ (x,y)] + µ∇x{u(x) · Γ̂ (x,y) · n̂(y)}

n̂(x) · τ̂ [t(y) · Ĝ(x,y)] = t(y) · Φ̂(x,y) =

= λn̂(x){∇x · [t(y) · Ĝ(x,y)]}+ µ[n̂(x) ·∇x][t(y) · Ĝ(x,y)] + µ∇x{n̂(x) · Ĝ(x,y) · t(y)} =

= t(y) · {λ[∇x · Ĝ(x,y)]⊗ n̂(x) + µ[n̂(x) ·∇x]Ĝ(x,y) + µ[n̂(x) · Ĝ(x,y)]⊗∇x}

(C.24)

The above equations can be used to identify the Green function operators Ŵ (x,y) and
Φ̂(x,y)

Ŵ (x,y) = λ[Γ̂ (x,y) ·∇x]⊗ n̂a + µ[n̂a ·∇x]Γ̂ (x,y) + µ[Γ̂ (x,y) · n̂a)]⊗∇x

Φ̂(x,y) = λ[∇x · Ĝ(x,y)]⊗ n̂(x) + µ[n̂(x) ·∇x]Ĝ(x,y) + µ[n̂(x) · Ĝ(x,y)]⊗∇x

(C.25)

and their matrix elements.
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We may deduce the form of Ŵ (x,y) from as follows:

Ŵ (x,y) = λ[Γ̂ (x,y) ·∇x]⊗ n̂a + µ(n̂a ·∇x)Γ̂ (x,y) + µ[Γ̂ (x,y) · n̂a)]⊗∇x =

−
λk2C
λ+ 2µ

n̂b ⊗ n̂agC(R) +
2λµ

λ+ 2µ

{
(n̂b ·∇x)∇x ⊗ n̂a + (n̂a ·∇x)n̂b ⊗∇x

}
gC(R)+

+ µ2
{
(n̂a ·∇x)(n̂b ·∇x)Ĝ(x,y) + (n̂a ·∇x)∇x ⊗ [n̂b · Ĝ(x,y)]+

+ (n̂b ·∇x)[n̂a · Ĝ(x,y)]⊗∇x + [n̂b · Ĝ(x,y) · n̂a]∇x ⊗∇x

}

(C.26)

C.3.3 The acoustics limit

As a check of the representation formulae and the Green functions in elastodynamics, we
consider in the following their acoustics limit, µ→ 0.

The Green functions in the acoustics limit. In the acoustics limit the Fourier transform
of Ĝ becomes

G̃ij =
1

µ
(δij −

qiqj
k2S

)
1

q2 − k2S
+

1

µk2S

qiqj
q2 − k2C

G̃ij (µ→0) = −
1

λk2C
(δij −

qiqj
q2 − k2C

)

Σ̃(R)ijk (µ→0) = δij
qk

q2 − k2C

(C.27)

Ĝ(R)µ=0 = −
1

λk2C
[Îδ3(R) +∇R ⊗∇RgC(R)],

Σ̂(R) = λÎ∇R · Ĝ(R) = Î∇RgC(R),

Γ̂ (R) = n̂(y)⊗∇RgC(R),

Φ̂(R) = ∇RgC(R)⊗ n̂(x),

Ŵ (x,y) = −λk2Cn̂b ⊗ n̂agC(R).

(C.28)

Representation formulae in the acoustics limit. We consider a single region Ω bounded
by ∂Ω By assuming that, inside Ω the displacement u(x) satisfies the Lamé equation (C.14) we
may construct the following integral representations for the displacement and traction
fields in a region Ω bounded by ∂Ω which allows to to find the value of the displacement field
at any point x in Ω in terms of the integral of 2 fields u() and t(x) on the region boundary

u(x) =

∫

∂Ω

dSy
[
u(y) · Γ̂ (x,y) + t(y) · Ĝ(x,y)

]
(C.29)

t(x) =

∫

∂Ω

dSy
[
u(y) · Ŵ (x,y) + t(y) · Φ̂(x,y)

]
(C.30)
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Since the operators appearing in the integral equations are obtained as boundary limits of
the expressions for the fields, the “contact” δ(R) terms do not contribute to the expressions
for the operators. After discarding such terms, we obtain

Ĝ(x,y)µ=0 = −
1

λk2C
[∇R ⊗∇RgC(R)],

Γ̂ (x,y)µ=0 = n̂(y)⊗∇RgC(R),

Φ̂(x,y)µ=0 = ∇RgC(R)⊗ n̂(x),

Ŵ (x,y)µ=0 = −λk2Cn̂(y)⊗ n̂(x)gC(R),

(bĜa)µ=0 = −
1

λk2C
(∇R · b)(∇R · a)gC(R),

(bΓ̂a)µ=0 = (b · n̂b)(a ·∇R)gC(R),

(bΦ̂a)µ=0 = (a · n̂a)(b ·∇R)gC(R)],

(bŴa)µ=0 = −λk2C(n̂b · b)(n̂a · a)gC(R)

(C.31)

C.4 Construction of coupled surface integral equations for piecewise homo-
geneous media for displacement and surface traction fields

Surface integral equations – or boundary integral equations, BIEs – are applicable to piecewise
homogeneous materials, and provide solutions for the displacement and traction fields defined
on interfaces separating different material regions. Fields in the individual regions are described
in terms of the appropriate Green functions for elastic materials.

C.4.1 Structure of a system of regions and the resultant integral equations

As an example, we give below explicit expressions for a system of surface integral equations
describing a set of homogeneous regions Ωm separated by interfaces;

Figure 54: A schematic representation of regions Ω and interfaces S appearing in surface
integral equations .
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Figure 55: A simplified schematics of the topological structure of regions and interfaces .

Figure 56: A simplified schematics of the topological structure of regions and interfaces in head
model.

One of these regions, Ω0, is the unbounded background medium (air). The displacement
and traction fields are assumed to be continuous across the interfaces.

The resulting system of integral equations is then obtained in the following three steps

(a) using a conventional representation theorem (found e.g. in Morse and Feshbach) for each
material region Ω for the displacement field in this region written in terms of the surface
integrals over ∂Ω with “surface sources” displacements and traction fields

u(x) = +

∫

∂Ω

dSy
[
u(y) · Γ̂m(x,y) + t(y) · Ĝm(x,y),

]

for the displacement u(r) and the traction t(r) = n̂(r) · τ̂(r) fields

(b) imposing boundary conditions on the continuity of u(r) and and of t(r) on each inter-
face (oriented surface) Smn separating the regions two equations per interface (oriented
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surface) Smn separating the regions Ωm (on the negative side of the interface) and Ωn

(on its positive side),

um(r) = un(r),

tm(r) = tn(r).
(C.32)

(c) by writing two two suitable equations following from the boundary conditions for each
interface Smn.

C.4.2 Boundary conditions

If the n-th interface is an interface between

• two elastic media (1) and (2),

• two viscous fluids, or,

• a viscous fluid (1) and an elastic medium (2),

we impose the following boundary conditions (six in general)

• equality of the three components of the displacement field on both sides of the interface,

u(1)(r) = u(2)(r) , (C.33)

• equality of the three components of the traction field on both sides of the interface,

T̃ (1)u(1)(r) = T̃ (2)u(2)(r) . (C.34)

On the interface between non-viscous fluid and the elastic medium we impose the fol-
lowing reduced number of boundary conditions (four in general):

• equality of the normal component of the displacement field on both sides of the interface,

n̂(1)(r) · u(1)(r) = n̂(1)(r) · u(2)(r) , (C.35)

• equality of the normal component of the traction field on both sides of the interface.

n̂(1)(r) · t(1)(r) = n̂(1)(r) · t(2)(r) , (C.36)

• vanishing tangential components of the traction field

n̂(1)(r)× [n̂(1)(r)×)t(1)(r)] = n̂(2)(r)× [n̂(2)(r)×)t(2)(r)] = 0, (C.37)

on both sides of the interface

Finally on the interface between two non-viscous fluids we impose the following reduced
number of boundary conditions (four in general):
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• equality of the normal component of the displacement field on both sides of the interface,

n̂(1)(r) · u(1)(r) = n̂(1)(r) · u(2)(r) , (C.38)

• equality of the normal component of the traction field on both sides of the interface.

n̂(1)(r) · t(1)(r) = n̂(1)(r) · t(2)(r) , (C.39)

• vanishing tangential components of the traction field

n̂(1)(r)× [n̂(1)(r)×)t(1)(r)] = n̂(2)(r)× [n̂(2)(r)×)t(2)(r)] = 0, (C.40)

on both sides of the interface

C.4.3 Choice of the integral equation formulation

The choice of the integral equations is not unique. It is possible to write several different set of
integral equations by taking different linear combinations of equations representing boundary
condition for continuity of displacement and and traction fields across material interfaces.
While all such integral equations are theoretically equivalent, they tend to differ in terms of
accuracy, computational resources needed an solution convergence

We considered the two integral representations for the displacement and of the traction
fields

u(x) =

∫

∂Ω

dSy[u(y) · Γ̂ (x,y) + t(y) · Ĝ(x,y)]

t(x) =

∫

∂Ω

dSy[u(y) · Ŵ (x,y) + t(y) · Φ̂(x,y)]

(C.41)

C.4.4 Construction of the second-kind integral equations system

On the interface Smn we write 6 equations for 6 unknowns u(x), t(x)

lim
x∈∂Ωm

u(x) in regionΩm

lim
x∈∂Ωn

u(x) in regionΩn

The resulting second kind pair surface integral equations for u and t for the
interface separating two regions Ωm and Ωn is
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1
2 u(x) +

∫

S
mn

dSy
[
u(y) · Γ̂m(x,y) + t(y) · Ĝm(x,y)

]

−
∑

S
im

∈∂Ω
m

i6=n

∫

S
im

dSy
[
u(y) · Γ̂m(x,y) + t(y) · Ĝm(x,y)

]
= δm0 u

in(x)

1
2 u(x)−

∫

S
mn

dSy
[
u(y) · Γ̂n(x,y) + t(y) · Ĝn(x,y)

]

+
∑

S
nj

∈∂Ω
n

j 6=m

−

∫

S
nj

dSy
[
u(y) · Γ̂n(x,y) + t(y) · Ĝn(x,y)

]
= δn0 u

in(x) for x ∈ Smn .

(C.42)

C.4.5 Construction of the first-kind integral equations

The resulting first kind pair surface integral equations for u and t

On the interface Smn we write 6 equations for 6 unknowns u(x), t(x)

um(x) = un(x) for x on interface Smn

tm(x) = tn(x) for x on interface Smn

The equations of our interest can be obtained in the following way:
By taking the difference of the equations (C.45) we obtain the first equation of the second

set
∫

S
mn

dSy
{
u(y) · [Γ̂m(x,y) + Γ̂n(x,y)] + t(y) · [Ĝm(x,y) +Gn(x,y)]

}

−
∑

S
im

∈∂Ω
m

i6=n

∫

S
im

dSy
{
u(y) · [Γ̂m(x,y) + Γ̂n(x,y)] + t(y) · [Ĝ(x,y) + Ĝn(x,y)]

}
=

= [δm0 − δn0]u
in(x)

(C.43)

By applying the traction filed operator n̂(x)) · [τ(u(x)] to both sides of the above equation
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(C.44) we obtain the second equation of the second set

∫

S
mn

dSy
{
u(y) · [Ŵm(x,y) + Ŵn(x,y)] + t(y) · [Φ̂m(x,y) + Φ̂n(x,y)]

}

−
∑

S
im

∈∂Ω
m

i6=n

∫

S
im

dSy
{
u(y) · [Ŵm(x,y) + Ŵn(x,y)] + t(y) · [Φ̂(x,y) + Φ̂n(x,y)]

}

= [δm0 − δn0] t
in(x)

(C.44)

The resulting first kind pair surface integral equations for u and t for the interface
separating two regions Ωm and Ωn is

1
2 u(x) +

∫

S
mn

dSy
[
u(y) · Γ̂m(x,y) + t(y) · Ĝm(x,y)

]

−
∑

S
im

∈∂Ω
m

i6=n

∫

S
im

dSy
[
u(y) · Γ̂m(x,y) + t(y) · Ĝm(x,y)

]
= δm0 u

in(x)

1
2 t(x)−

∫

S
mn

dSy
[
u(y) · Ŵn(x,y) + t(y) · Φ̂n(x,y)

]

+
∑

S
nj

∈∂Ω
n

j 6=m

−

∫

S
nj

dSy
[
u(y) · Ŵn(x,y) + t(y) · Φ̂n(x,y)

]
= δn0 t

in(x) for x ∈ Smn .

(C.45)
With reference to Fig. 55, the first of the above integral equations represents contributions

to the displacement field u on the interface Smn due to the displacement and traction fields u
and t on the same interface (the first integral) and on other interfaces, Sim, forming boundaries
of the region Ωm with other regions Ωi, i 6= n.

The integrals involve Green functions

Ĝi, Γ̂i, Ŵi, and Φ̂i, i = 1, ..., N

describing propagation of the displacement and stress fields in the region Ωj .
Similarly, the second of the above integral equations represents contributions to the field u

on the interface Smn due to the fields on the boundaries of the other region, Ωn, adjacent to
the interface. The r.h.s.s of the above equations are the incident fields due to distant sources
in the region Ω0 (hence the delta-functions δm0 and δn0).

The details of the construction and regularization of Ĝi, Γ̂i, Ω̂i, andΦ̂i are described in the
subsequent section.

We discuss here briefly the form of the surface boundary equations and their discretization,
which is now being implemented in our solver.
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C.5 Basis functions and discretization of surface integral equations

In order to solve the surface integral equations numerically, it is necessary to make assumptions
on the discretization of the solution, i.e., on the trial basis functions, and on the test basis
functions.

In our implementation we use a discretization uniquely determined by our choice of dis-
cretization in the surface integral equations We also use, similarly to the volumetric problem,
the Galerkin discretization, i.e., identical trial and testing basis functions.

Figure 57: A set of six triangles sharing a common vertex vα supporting the node based basis
function

In the surface problems we assume the displacement field is expanded in piecewise linear
basis functions supported on sets of triangles. The resulting surface basis functions are piece-
wise linear vector basis functions describing the components of the displacement field u. By
symmetry between the displacement and traction fields in the integral equations, we assume
analogous linear basis functions for the components of t.

According to the above criteria, we specify the basis functions as follows:
For each vertex vα of the surface mesh we define three vector basis functions, denoted

ψα(r), representing displacements in the x, y, and z directions. Correspondingly, the index α
refers to the vertex and the direction, α = (vα,m), m = 1, 2, 3 (or m = x, y, z).

Each such function, ψα(r), is associated with a vertex vα and supported on a set of triangles
(facets) fα sharing that vertex. We parameterize the basis function as

ψα(r) ≡ ψvα,m
(r) = em φvα

(r) , (C.46)

where em is the unit vector along the m-the axis, and φvα
is a scalar basis function defined by

φα(x) ≡ φvα
(x) =

∑

fα∈Fα

φvα, fα
(x) , (C.47)

where the sum is taken over the set Fα of all facets fα sharing the vertex vα. Further, each
of the linear functions φvα, fα

(x), supported on the facet fα, is uniquely defined by setting
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its value to unity at r = vα and to zero at the remaining vertices of the facet. An explicit
expression is

φvα, fα
(x) =

[
1−

1

hvα, fα

n̂vα, fα
· (x− vα)

]
χfα

(x) , (C.48)

where χfα
(x) is the characteristic function of the facet fα, n̂vα, fα

is the unit outer normal
to the facet edge opposite the vertex vα, and hvα, fα

is the facet height relative to that edge.
Components of the basis function ψα are then

ψi
α(r) ≡ ψi

vα,m
(r) = δmi φvα

(r) . (C.49)

In order to simplify the notation in the following we will use a simplified notation

ψi
α(x) ≡ ψi

vα,m(x) = δmi φvα
(x) ≡ φa(x)χa(x),

a ≡ vα,m
(C.50)

We represent the linear basis functions components associated with one triangle a or b as
follows:

Ψa(x) = aφa(x),

Ψ b(x) = bφb(x),

φa(x) = ξaχa(x) =

[
1−

ĥa · (x− va)

ha

]
χa(x),

φb(x) = ξbχb(x) =

[
1−

ĥb · (x− vb)

hb

]
χb(x).

(C.51)

As follows from the construction, the scalar and vectorial basis functions (C.47) and (C.46)
are two-dimensional analogues (actually, restrictions) of the piecewise linear basis functions
supported on tetrahedra and used in our previously developed volumetric formulation The
advantage of this discretization scheme is that the solutions of the surface and volumetric
equations can be directly compared with one another.

Let ψα(r) and ψβ(r) be the two vector basis functions associated with nodes vα and vβ ,

ψα(r) = αφvα(r),

ψβ(r
′) = βφvβ(r

′).

α =



αx

αy

αz




β =




βx

βy

βz




(C.52)
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C.5.1 Matrix elements of the integral equation kernels appearing in representa-
tion formulas for the displacement and traction fields

The explicit forms of the matrix elements of Ĝ(x,y) , Γ̂ (x,y), Φ̂(x,y), and Ŵ (x,y) sand-
wiched between single triangle contributions to the linear basis functions Ψa(x) and Ψ b(y) are
: associated with triangles a and b

Ψa(x) = aφa(x),

Ψ b(x) = bφb(x),

φa(x) = ξaχa(x) = [1−
ĥa · (x− va)

ha
]χa(x),

φb(x) = ξbχb(x) = [1−
ĥb · (x− vb)

hb
]χb(x).

(C.53)

are

[Ψ b(y) · Ĝ(x,y) · Ψa(x)] ≡ φb(y)φa(x)[b · Ĝ(x,y) · a]

[Ψ b(y) · Γ̂ (x,y) · Ψa(x)] ≡ φb(y)φa(x)[b · Γ̂ (x,y) · a]

[Ψ b(y) · Φ̂(x,y) · Ψa(x)] ≡ φb(y)φa(x)[b · Φ̂(x,y) · a]

[Ψ b(y) · Ŵ (x,y) · Ψa(x)] ≡ φb(y)φa(x)[b · Ŵ (x,y) · a],

(C.54)

with

[b · Γ̂ · a] = λ(b · n̂b)(a · Ĝ ·∇x) + µ(n̂b ·∇x)(a · Ĝ · b) + µ(b ·∇x)(a · Ĝ · n̂b)

[b · Φ̂ · a] = λ(n̂a · a)(b̂ · Ĝ ·∇x) + µ(n̂a ·∇R)(a · Ĝ · b) + µ(a ·∇R)(n̂a · Ĝ · b)

[b · Ŵ · a] = λ[b · Γ̂ ·∇x](a · n̂a) + µ(n̂a ·∇x)(b · Γ̂ · a) + µ(a ·∇x)(b · Γ̂ · n̂a)

= −
λ2k2C
λ+ 2µ

(a · n̂a)(b · n̂b)gC(R)+

+
2λµ

λ+ 2µ
[(n̂a · a)(n̂b ·∇x)(b ·∇x) + (n̂b · b)(n̂a ·∇x)(a ·∇x)]gC(R)+

+ µ2
{
(n̂a ·∇x)(n̂b ·∇x)[b · Ĝ(x,y) · a] + (n̂a ·∇x)(b ·∇x)[n̂b · Ĝ(x,y) · a]+

+ (a ·∇x)(n̂b ·∇x)[b · Ĝ(x,y) · n̂a] + (a ·∇x)(b ·∇x)[n̂b · Ĝ(x,y) · n̂a

]
}

(C.55)
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By substituting explicit expressions for Ĝ in terms of gS and gC we obtain

(bĜa) = (a · b)
gS(R)

µ
+ (a ·∇R)(b ·∇R)

gS(R)− gC(R)

µk2S
,

(bΓ̂a) =
λ

λ+ 2µ
(n̂b · b)(a ·∇R)gC(R) + {(a · b)(n̂b ·∇R) + (n̂b · a)(b ·∇R)}gS(R)+

+
2

k2S
(a ·∇R)(b ·∇R)(n̂b ·∇R)[gS(R)− gC(R)],

(bΦ̂a) =
λ

λ+ 2µ
(n̂a · a)(b̂ ·∇R)gC(R) + {(a · b)(n̂a ·∇R) + (n̂a · b)(a ·∇R)}gS(R)+

+
2

k2S
(a ·∇R)(b ·∇R)(n̂a ·∇R)[gS(R)− gC(R)],

(b · Ŵ · a) = −
λ2k2C
λ+ 2µ

(a · n̂a)(b · n̂b)gC(R)+

+
2λµ

λ+ 2µ
[(n̂a · a)(n̂b ·∇x)(b ·∇x) + (n̂b · b)(n̂a ·∇x)(a ·∇x)]gC(R)+

+ µ
{
(a · b)(n̂a ·∇x)(n̂b ·∇x) + (n̂b · a)(n̂a ·∇x)(b ·∇x)+

+ (n̂a · b)(a ·∇x)(n̂b ·∇x) + (n̂a · n̂b)(a ·∇x)(b ·∇x)}gS(R)+

+
4µ

k2S
(n̂a ·∇x)(n̂b ·∇x)(a ·∇x)(b ·∇x)[gS(R)− gC(R)].

(C.56)

C.5.2 Construction of the integral representation and matrix elements for the
traction field

We consider the second choices of coupled integral equations for a multi-region problem. An
apparent advantage of this formulation is that it enforces boundary conditions on each interface
in a stronger way than the first set.

In order to construct the integral representation for the traction field in a region
Ω bounded by ∂Ω we applying the traction field operator yo the integral representation for
displacement u(x)

τ̂ [u(x)] = λÎ[∇x · u(x)] + µ[∇x ⊗ u(x) + u(x)⊗∇x] =

= τ̂
{∫

∂Ω

dSy
[
u(y) · Γ̂ (x,y) + t(y) · Ĝ(x,y)

]}

=

∫

∂Ω

dSy
[
τ̂ [u(y) · Γ̂ (x,y)] + τ̂ [t(y) · Ĝ(x,y)]

]

τ̂ [u(y) · Γ̂ (x,y)] = λÎ∇x · [u(y) · Γ̂ (x,y)] + µ∇x ⊗ [u(y) · Γ (x,y)] + µ[u(y) · Γ (x,y)]⊗∇x

τ̂ [t(y) · Ĝ(x,y)] = λÎ∇x · [t(y) · Ĝ(x,y)] + µ∇x ⊗ [t(y) · Ĝ(x,y)] + µ[t(y) · Ĝ(x,y)]⊗∇x

(C.57)
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The contributions to traction field components associated with the last 2 terms of (C.57) are

n̂(x) · τ̂ [u(y) · Γ̂ (x,y)] = u(y) · Ŵ (x,y) =

= λn̂(x){∇x · [u(y) · Γ̂ (x,y)]} + µ[n̂(x) ·∇x][u(y) · Γ̂ (x,y)] + µ∇x{u(x) · Γ̂ (x,y) · n̂(y)}

n̂(x) · τ̂ [t(y) · Ĝ(x,y)] = t(y) · Φ̂(x,y) =

= λn̂(x){∇x · [t(y) · Ĝ(x,y)]}+ µ[n̂(x) ·∇x][t(y) · Ĝ(x,y)] + µ∇x{n̂(x) · Ĝ(x,y) · t(y)} =

= t(y) · {λ[∇x · Ĝ(x,y)]⊗ n̂(x) + µ[n̂(x) ·∇x]Ĝ(x,y) + µ[n̂(x) · Ĝ(x,y)]⊗∇x}

(C.58)

The above equations can be used to identify the Green function operators Ŵ (x,y) and
Φ̂(x,y)

Ŵ (x,y) = λ[Γ̂ (x,y) ·∇x]⊗ n̂a + µ[n̂a ·∇x]Γ̂ (x,y) + µ[Γ̂ (x,y) · n̂a)]⊗∇x

Φ̂(x,y) = λ[∇x · Ĝ(x,y)]⊗ n̂(x) + µ[n̂(x) ·∇x]Ĝ(x,y) + µ[n̂(x) · Ĝ(x,y)]⊗∇x

(C.59)

and their matrix elements.
The explicit forms of the matrix elements of Ŵ (x,y) and Φ̂(x,y) Ĝ(x,y) sandwiched

between Ψa(x) and Ψ b(y) are :

[Ψ b(y) · Ŵ (x,y) · Ψa(x)] ≡ φb(y)φa(x)[b · Ŵ (x,y) · a] ≡
{
n̂(x) · τ̂ [Ψ b(y) · Γ̂ (x,y)]

}
· Ψa(x) =

= φa(x)φb(y)
{
λ(a · n̂a){∇x · [b · Γ̂ (x,y)]}+

+ µ[n̂a ·∇x]{[b · Γ̂ (x,y)] · a}+ µ(a ·∇x){[b · Γ̂ (x,y)] · n̂a)}

[Ψ b(y) · Φ̂(x,y) · Ψa(x)] ≡ φb(y)φa(x)[b · Φ̂(x,y) · a] ≡
{
n̂(x) · τ̂ [Ψ b(y) · Ĝ(x,y)]

}
· Ψa(x) =

= φa(x)φb(y)
{
λ(a · n̂a){b · [∇x · Ĝ(x,y)]}+ µ[n̂a ·∇x][a · Ĝ(x,y) · b]+

+ µ(a ·∇x){n̂a · Ĝ(x,y) · b)}

(C.60)

We may deduce the form of Ŵ (x,y) from as follows:

Ŵ (x,y) = λ[Γ̂ (x,y) ·∇x]⊗ n̂a + µ(n̂a ·∇x)Γ̂ (x,y) + µ[Γ̂ (x,y) · n̂a)]⊗∇x =

−
λk2C
λ+ 2µ

n̂b ⊗ n̂agC(R) +
2λµ

λ+ 2µ

{
(n̂b ·∇x)∇x ⊗ n̂a + (n̂a ·∇x)n̂b ⊗∇x

}
gC(R)+

+ µ2
{
(n̂a ·∇x)(n̂b ·∇x)Ĝ(x,y) + (n̂a ·∇x)∇x ⊗ [n̂b · Ĝ(x,y)]+

+ (n̂b ·∇x)[n̂a · Ĝ(x,y)]⊗∇x + [n̂b · Ĝ(x,y) · n̂a]∇x ⊗∇x

}

(C.61)

By using the following auxiliary expressions for terms appearing in the matrix elements

∇x · Ĝ(x,y) =
1

λ+ 2µ
∇xgC(R),

∇x · [∇x · Ĝ(x,y)] = [∇x · Ĝ(x,y) ·∇x] = −
k2C

λ+ 2µ
[gC(R) + δ(R)],

∇x · [Ĝ(x,y) · b] = [b · Ĝ(x,y) ·∇x] =
1

λ+ 2µ
(b ·∇x)gC(R),

(C.62)
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we find the following formula for the matrix element of Ŵ

b · Ŵ (x,y) · a =

= −
λ2k2C
λ+ 2µ

(a · n̂a)(b · n̂b)gC(R)+

+
2λµ

λ+ 2µ
[(n̂a · a)(n̂b ·∇x)(b ·∇x) + (n̂b · b)(n̂a ·∇x)(a ·∇x)]gC(R)+

+ µ2
{
(n̂a ·∇x)(n̂b ·∇x)[b · Ĝ(x,y) · a] + (n̂a ·∇x)(b ·∇x)[n̂b · Ĝ(x,y) · a]+

+ (a ·∇x)(n̂b ·∇x)[b · Ĝ(x,y) · n̂a] + (a ·∇x)(b ·∇x)[n̂b · Ĝ(x,y) · n̂a]
}

(C.63)

b · Ŵ (x,y) · a =

−
λ2k2C
λ+ 2µ

(a · n̂a)(b · n̂b)gC(R)+

+
2λµ

λ+ 2µ
[(n̂a · a)(n̂b ·∇x)(b ·∇x) + (n̂b · b)(n̂a ·∇x)(a ·∇x)]gC(R)+

+ µ
{
(a · b)(n̂a ·∇x)(n̂b ·∇x) + (n̂b · a)(n̂a ·∇x)(b ·∇x)+

+ (n̂a · b)(a ·∇x)(n̂b ·∇x) + (n̂a · n̂b)(a ·∇x)(b ·∇x)}gS(R)+

+
4µ

k2S
(n̂a ·∇x)(n̂b ·∇x)(a ·∇x)(b ·∇x)[gS(R)− gC(R)].

(C.64)

C.5.3 Basic formulae needed for the evaluation of matrix elements of Ĝ, Γ̂ , Φ̂,
and Ŵ

The kernels Ĝ, Γ̂ , Φ̂, and Ŵ need to be sandwiched between the piecewise linear node
basis function associated with a set of triangles sharing common vertices α and β.

We consider a pair of triangles a and b with normal unit vectors n̂a and n̂b The normal
vectors to the sides a and b are ĥa and ĥb We note that n̂a is perpendicular to the edge la
facing vertex a.

Let us represent the linear basis functions components associated with one triangle a or b
as follows

Ψa(x) = aφa(x),

Ψ b(x) = bφb(x),

φa(x) = ξaχa(x) =

[
1−

ĥa · (x− va)

ha

]
χa(x),

φb(x) = ξbχb(x) =

[
1−

ĥb · (x− vb)

hb

]
χb(x).

(C.65)
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We may decompose both a and b into tangential and normal components to triangle faces

a = (n̂a × a)× n̂a + (n̂a · a)n̂a = at + an

b = (n̂b × b)× n̂b + (n̂b · b)n̂b = bt + bn

an = (n̂a · a)n̂a

at = (n̂a × a)× n̂a = atât

an = (n̂a · a)

at =
√

|a|2 − a2n,

la = n̂a × ĥa

(C.66)

Tangential derivatives of basis functions (we neglect the contributions associated with deriva-
tives of the characteristic function χa)

{(n̂a ×∇x)× n̂a}φa(x) = −2
ĥa

ha
χa(x)

(n̂a ×∇x)φa(x) = −2
(n̂a × ĥa)

ha
χa(x) = −2

l̂a

ha
χa(x),

[at ·∇x]φa(x) = −2at
(ât · ĥa)

ha
χa(x)

(C.67)

(a ·∇R)(b ·∇R) = (an ·∇R)(bn ·∇R) + (at ·∇R)(bn ·∇R)+

+ (an ·∇R)(bt ·∇R) + (at ·∇R)(bt ·∇R)

(an ·∇R)(bn ·∇R) = −(an ×∇R) · (bn ×∇R) + (an · bn)∇
2
R

(C.68)

In the following we provide explicit expressions for matrix elements of the kernels Ĝ, Γ̂ Φ̂
and Ŵ .

Evaluation of matrix elements of Ĝ.
∫
dSxdSyΨa(x)Ĝ(x,y)Ψ b(y) =

=
1

µ

∫

TaTb

dSxdSyφa(x)φb(y)[(a · b)gS(R) +
1

k2S
(a ·∇R)(b ·∇R)gSC(R)]

(C.69)
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∫

TaTb

dSxdSyφa(x)φb(y)(an ·∇R)(bt ·∇R)gSC(R) =
2(bt · hb)

hb

∫
dSxdSyφa(x)(an · R̂)g′SC(R)

∫

TaTb

dSxdSyφa(x)φb(y)(at ·∇R)(bn ·∇R)gSC(R) =
2(at · ha)

ha

∫
dSxdSyφb(y)(bn · R̂)g′SC(R)

∫

TaTb

dSxdSyφa(x)φb(y)(at ·∇R)(bt ·∇R)gSC(R) =
4(at · ĥa)(bt · ĥb)

hahb

∫
dSxdSygSC(R)

∫

TaTb

dSxdSyφa(x)φb(y){(an ·∇R)(bn ·∇R)gSC(R) =

= anbn

∫

TaTb

dSxdSy{φa(x)φb(y)(n̂a · n̂b)[k
2
SgS(R)− k2CgC(R)]−

4(̂la · l̂b)

hahb
‘gSC(R)}

(C.70)

By collecting the above terms we obtain
∫

TaTb

dSxdSyφa(x)gSC(R)(a ·∇R)(b ·∇R)φb(y) =

= anbn(n̂a · n̂b)

∫

TaTb

dSxdSyφa(x)φb(y)[k
2
SgS(R)− k2CgC(R)]+

+
2an(b̂t · ĥb)

ha

∫

TaTb

dSxdSyφa(x)(R̂ · n̂a)g
′
SC(R)+

+
2bn(at · ĥa)

hb

∫

TaTb

dSxdSyφb(y)(R̂ · n̂b)g
′
SC(R)+

+ 4
(a · ĥa)(b · ĥb)− anbn(̂la · l̂b)

hahb

∫

TaTb

dSxdSygSC(R).

(C.71)

In deriving the above we used the following auxiliary relations

n̂a × ĥa = l̂a

For the linear basis function associated with node vb we have

∇xψa(x) = −
ĥa

ha
∫
dSgSC(R)∇xφa(x)] = −ĥa

∫
dSgSC(R)

For the constant basis function associated with triangle T’ and vertex vb we have

∇xψa(x) = −
3∑

b=1

ĥbδb(r)
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∫
dSgSC(R)[∇xφa(x)] = −ĥa

∫

∂la

dSgSC(R)

Complete matrix element of Ĝ for the linear basis functions

∫

TaTb

dSxdSyΨ b(y)Ĝ(R)Ψa(x) =
(a · b)

µ
I1 +

(a · n̂a)(b · n̂b)(n̂a · n̂b)

µk2S
I2+

+
4[(b · ĥb)(a · ĥa)− (b · n̂b)(a · n̂a)(̂la · l̂b)]

µk2Shahb
I3 +

2(ĥb · b)(a · n̂a)

µk2Shb
I4 +

2(ĥa · a)(b · n̂b)

µk2Sha
I5,

(C.72)
where

I1 =

∫

Ta

dSx

∫

Tb

dSyφa(x)φb(y)gS(R),

I2 =

∫

Ta

dSx

∫

Tb

dSyφa(x)φb(y)[k
2
SgS(R)− k2CgC(R)],

I3 =

∫

Ta

dSx

∫

Tb

dSygSC(R),

I4 =

∫

Ta

dSx

∫

Tb

dSyφa(x)(n̂a · R̂)g′SC(R),

I5 =

∫

Ta

dSx

∫

Tb

dSyφb(y)(n̂b · R̂)g′SC(R).

(C.73)

Evaluation of matrix elements of Γ̂ .
∫
dSxdSy[Ψa(x) · Γ̂ (x,y) · Ψ b(y)] =

∫
dSxdSyφa(x)φb(y)[bΓ̂a], (C.74)

where

(bΓ̂a) =
λ

λ+ 2µ
(n̂b · b)(a ·∇R)gC(R) + {(a · b)(n̂b ·∇R) + (n̂b · a)(b ·∇R)}gS(R)+

+
2

k2s
(a ·∇R)(b ·∇R)(n̂b ·∇R)[gS(R)− gC(R)],

(C.75)

The operator Γ̂ needs to be sandwiched between the piecewise linear basis function asso-
ciated with vertex a of a triangle a and a piecewise constant function associated with triangle
b:

We will use the following decompositions of the ∇R into its tangential and normal compo-
nents

(a ·∇R) = an(n̂a ·∇R) + at(t̂a ·∇R), (C.76)
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Subsequently we evaluate the matrix elements

∫
dSxdSyφa(x)φb(y)(n̂b · b))(a · R̂)g′C(R) = (n̂b · b)[anG1 + at(t̂a · ĥa)G2],

(n̂b · a)

∫
dSxdSyφa(x)φb(y)(b ·∇R)gS(R) = (n̂b · a) + bt(t̂b · ĥb)G4],

(a · b)

∫
dSxdSyφa(x)φb(y)(n̂b ·∇R)gS(R) = (a · b)G5,

(C.77)

The product of the three projections of the ∇R appearing in the matrix element of Γ̂ can
be suitably written as

(n̂b ·∇)(b ·∇)(a ·∇) = anbn(n̂a ·∇)(n̂b ·∇)(n̂b ·∇)+

+ atbt(n̂b ·∇)(t̂a ·∇)(tb ·∇)+

+ anbt(n̂b ·∇)(n̂a ·∇)(t̂b ·∇)+

+ atbn(n̂b ·∇)(t̂a ·∇)(n̂b ·∇) =

= anbn(n̂b ·∇)[(n̂a · n̂b)∇
2 − (n̂a ×∇) · (n̂b ×∇)]+

+ atbt(n̂b ·∇)(t̂a ·∇)(t̂b ·∇)+

+ anbt(t̂b ·∇)[(n̂a · n̂b)∇
2 − (n̂a ×∇) · (n̂b ×∇)]+

+ atbn(t̂a ·∇)[(n̂b · n̂b)∇
2 − (n̂b ×∇) · (n̂b ×∇)]

(C.78)

When sandwiched between the basis functions in the matrix element integrals the above terms
yield

{
anbn(n̂a · n̂b)φa(x)φb(y) +

−anbn(̂la · l̂b) + atbt(t̂a · ĥa)(t̂b · ĥb)

hahb

}
(n̂b ·∇)[gS(R)− gC(R)]+

+

[
anbt(n̂a · n̂b)(t̂b · ĥb)

hb
φa(R) +

atbn(n̂a · n̂b)(t̂a · ĥa)

ha
φb(R)

]
[k2SgS(R)− k2CgC(R)]+

+
(n̂a · n̂b)(̂la · l̂b)

hahb
[anbt(t̂b · ĥb)φa(R)δ(rb) + atbn(t̂a · ĥa)φb(R)δ(ra)][gS(R)− gC(R)].

(C.79)

Now the integrals of the term appearing in the above formula

∫
dSxdSyφa(x)φb(y)(n̂b ·∇)(a ·∇)(b ·∇)[gS(R)− gC(R)] =

= anbn(n̂a · n̂b)G6 + 4
−anbn(̂la · l̂b) + atbt(t̂a · ĥa)(t̂b · ĥb)

hahb
G7+

+ 2
anbt(n̂a · n̂b)(t̂b · ĥb)

hb
G8 +

atbn(n̂a · n̂b)(t̂a · ĥa)

ha
G9+

+ 4
(n̂a · n̂b)(̂la · l̂b)

hahb
[anbt(t̂b · ĥb)G10 + atbn(t̂a · ĥa)G11].

(C.80)
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Complete matrix element of Γ̂ for the linear basis functions

∫

TaTb

dSxdSyΨ b(y)Γ̂ (R)Ψa(x) =

=
λ

λ+ 2µ

{
(n̂b · b)[anG1 + at(t̂a · ĥa)G2] + (n̂b · a)[bnG3 + bt(t̂b · ĥb)G4] + (a · b)G5

}
+

+
2anbn(n̂a · n̂b)

k2S
G6 +

8[−anbn(̂la · l̂b) + atbt(t̂a · ĥa)(t̂b · ĥb)]

hahbk
2
S

G7+

+
4anbt(n̂a · n̂b)(t̂b · ĥb)

hbk
2
S

G8 +
4atbn(n̂a · n̂b)(t̂a · ĥa)

hak2S
G9+

+
8(n̂a · n̂b)(̂la · l̂b)

hahbk
2
S

[anbt(t̂b · ĥb)G10 + atbn(t̂a · ĥa)G11].

(C.81)
The evaluation of the above matrix elements reduces to the calculation of the following
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basic integrals

G1 =

∫

Ta

dSx

∫

Tb

dSyφa(x)φb(y)(n̂a · R̂)g′C(R),

G2 =

∫

Ta

dSx

∫

Tb

dSyφb(y)gC(R),

G3 =

∫

Ta

dSx

∫

Tb

dSy(n̂a · R̂)g′S(R) =

G4 =

∫

Ta

dSx

∫

Tb

dSygS(R),

G5 =

∫

Ta

dSx

∫

Tb

dSyφa(x)φb(y)(n̂b · R̂)g′S(R),

G6 =

∫

Ta

dSx

∫

Tb

dSyφa(x)φb(y)(n̂b · R̂)[k2SgS(R)− k2CgC(R)],

G7 =

∫

Ta

dSx

∫

Tb

dSy(n̂b · R̂)[k2SgS(R)− k2CgC(R)],

G8 =

∫

Ta

dSx

∫

Tb

dSyφa(x)[k
2
SgS(R)− k2CgC(R)],

G9 =

∫

Ta

dSx

∫

Tb

dlyφb(x)[k
2
SgS(R)− k2CgC(R)],

G10 =

∫

Ta

dSx

∫

lb

dlyφa(x)[gS(R)− gC(R)],

G11 =

∫

la

dlx

∫

Tb

dSyφb(x)[gS(R)− gC(R)],

(C.82)

Evaluation of matrix elements of Φ̂. Matrix elements of Φ̂ Complete matrix element of
Φ̂ for the linear basis functions

∫
dSxdSy[Ψa(x) · Φ̂(x,y) · Ψ b(y)] =

∫
dSxdSyφa(x)φb(y)[bΦ̂a], (C.83)

with

(bΦ̂a) =
λ

λ+ 2µ
(n̂a · a)(b̂ ·∇R)gC(R) + {(a · b)(n̂a ·∇R) + (n̂a · b)(a ·∇R)}gS(R)+

+
2

k2S
(a ·∇R)(b ·∇R)(n̂a ·∇R)[gS(R)− gC(R)],

(C.84)
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can obtained by transposition i.e., the following replacement in the expression for matrix
elements of Γ̂

a→ b∫

TaTb

dSxdSyΨ b(y)Φ̂(x,yR)Ψa(x) =

=
λ

λ+ 2µ

{
(n̂a · a)[bnF1 + bt(t̂b · ĥb)F2] + (n̂a · b)[anF3 + at(t̂b · ĥb)F4] + (a · b)F5

}
+

+
2anbn(n̂a · n̂b)

k2S
F6 +

8[−anbn(̂la · l̂b) + atbt(t̂a · ĥa)(t̂b · ĥb)]

hahbk
2
S

F7+

+
4anbt(n̂a · n̂b)(t̂b · ĥb)

hbk
2
S

F8 +
4atbn(n̂a · n̂b)(t̂a · ĥa)

hak2S
F9+

+
8(n̂a · n̂b)(̂la · l̂b)

hahbk
2
S

[anbt(t̂b · ĥb)F10 + atbn(t̂a · ĥa)F11].

(C.85)
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F1 =

∫

Ta

dSx

∫

Tb

dSyφa(x)φb(y)(n̂b · R̂)g′C(R),

F2 =

∫

Ta

dSx

∫

Tb

dSyφa(x)gC(R),

F3 =

∫

Ta

dSx

∫

Tb

dSy(n̂b · R̂)g′S(R) =

F4 =

∫

Ta

dSx

∫

Tb

dSygS(R),

F5 =

∫

Ta

dSx

∫

Tb

dSyφa(x)φb(y)(n̂a · R̂)g′S(R),

F6 =

∫

Ta

dSx

∫

Tb

dSyφa(x)φb(y)(n̂a · R̂)[k2SgS(R)− k2CgC(R)],

F7 =

∫

Ta

dSx

∫

Tb

dSy(n̂a · R̂)[k2SgS(R)− k2CgC(R)],

F8 =

∫

Ta

dSx

∫

Tb

dSyφb(y)[k
2
SgS(R)− k2CgC(R)],

F9 =

∫

Ta

dSx

∫

Tb

dlyφb(y)[k
2
SgS(R)− k2CgC(R)],

F10 =

∫

Ta

dSx

∫

lb

dlyφa(x)[gS(R)− gC(R)],

F11 =

∫

la

dlx

∫

Tb

dSyφb(y)[gS(R)− gC(R)],

(C.86)

Evaluation of matrix elements of Ŵ . Complete matrix element of Ŵ for the linear basis
functions

∫
dSxdSy[Ψa(x) · Ŵ (x,y) · Ψ b(y)] =

∫
dSxdSyφa(x)φb(y)[bŴa], (C.87)
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with

(b · Ŵ · a) = −
λ2k2C
λ+ 2µ

anbngC(R)+

+
2λµ

λ+ 2µ
[an(n̂b ·∇x)(b ·∇x) + bn(n̂a ·∇x)(a ·∇x)]gC(R)+

+ µ
{
(a · b)(n̂a ·∇x)(n̂b ·∇x) + (n̂b · a)(n̂a ·∇x)(b ·∇x)+

+ (n̂a · b)(a ·∇x)(n̂b ·∇x) + (n̂a · n̂b)(a ·∇x)(b ·∇x)}gS(R)+

+
4µ

k2S
(n̂a ·∇x)(n̂b ·∇x)(a ·∇x)(b ·∇x)[gS(R)− gC(R)].

(C.88)

We note that

an(n̂b ·∇x)(b ·∇x) + bn(n̂a ·∇x)(a ·∇x) =

anbn[2∇
2
x − (n̂b ×∇x)

2 − (n̂a ×∇x)
2]+

+ anbt(n̂b ·∇x)(t̂b ·∇x) + atbn(t̂a ·∇x)(n̂a ·∇x),

(C.89)

Subsequently we evaluate the integrals

∫

TaTb

dSxdSyφa(x)φb(y)[an(n̂b ·∇x)(b ·∇x) + bn(n̂a ·∇x)(a ·∇x)]gC(R) =

− 2k2CanbnW2 − 4
anbn
h2a

W3 − 4
anbn
h2b

W4 −
2anbt(t̂b · ĥb

hb
W5,−

2atbn(t̂a · ĥa

ha
W6.

(C.90)

{
(a · b)(n̂a ·∇x)(n̂b ·∇x) + (n̂b · a)(n̂a ·∇x)(b ·∇x)+

+ (n̂a · b)(a ·∇x)(n̂b ·∇x) + (n̂a · n̂b)(a ·∇x)(b ·∇x)} =

{(a · b)(n̂a ·∇x)(n̂a ·∇x) + bn(n̂b · a)(n̂a ·∇x)(n̂b ·∇x) + bt(n̂b · a)(n̂a ·∇x)(t̂b ·∇x)+

+ an(n̂a · b)(n̂a ·∇x)(n̂b ·∇x) + at(n̂a · b)(t̂a ·∇x)(n̂b ·∇x)+

anbn(n̂a · n̂b)(n̂a ·∇x)(n̂b ·∇x) + anbt(n̂a · n̂b)(n̂a ·∇x)(t̂b ·∇x)+

+ atbn(n̂a · n̂b)(t̂a ·∇x)(n̂b ·∇x) + atbt(n̂a · n̂b)(t̂a ·∇x)(t̂b ·∇x)} =

{(a · b) + bn(n̂b · a) + an(n̂b · a) + anbn(n̂a · n̂b)}(n̂a ·∇x)(n̂b ·∇x)+

+ {bt(n̂b · a) + anbt(n̂a · n̂b)}(n̂a ·∇x)(t̂b ·∇x)+

+ {at(n̂a · b) + atbn(n̂a · n̂b)}(t̂a ·∇x)(n̂b ·∇x)+

+ {atbt(n̂a · n̂b)}(t̂a ·∇x)(t̂b ·∇x).

(C.91)
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Finally
{
(a · b)(n̂a ·∇x)(n̂b ·∇x) + (n̂b · a)(n̂a ·∇x)(b ·∇x)+

+ (n̂a · b)(a ·∇x)(n̂b ·∇x) + (n̂a · n̂b)(a ·∇x)(b ·∇x)} =

= {[(a · b) + bn(n̂b · a) + an(n̂b · a) + anbn(n̂a · n̂b)](n̂a · n̂b)}∇
2
x+

{[(a · b) + bn(n̂b · a) + an(n̂b · a) + anbn(n̂a · n̂b)](n̂a · n̂b)}(n̂a ×∇x) · (n̂b ×∇x)+

+ {bt(n̂b · a) + anbt(n̂a · n̂b)}(n̂a ·∇x)(t̂b ·∇x)+

+ {at(n̂a · b) + atbn(n̂a · n̂b)}(t̂a ·∇x)(n̂b ·∇x)+

+ {atbt(n̂a · n̂b)}(t̂a ·∇x)(t̂b ·∇x).

(C.92)

∫

TaTb

dSxdSyφa(x)φb(y)
{
(a · b)(n̂a ·∇x)(n̂b ·∇x) + (n̂b · a)(n̂a ·∇x)(b ·∇x)+

+ (n̂a · b)(a ·∇x)(n̂b ·∇x) + (n̂a · n̂b)(a ·∇x)(b ·∇x)}gS(R) =

{[(a · b) + bn(n̂b · a) + an(n̂b · a) + anbn(n̂a · n̂b)](n̂a · n̂b)}[−k
2
SW7 −

4ĥa · ĥb)

hahb
W8]+

+
−2[bt(n̂b · a) + anbt(n̂a · n̂b)](t̂b · ĥb)

hb
W9 −

2[at(n̂a · b) + atbn(n̂a · n̂b)](t̂a · ĥa)

ha
W10+

+
4atbt(n̂a · n̂b)(t̂a · ĥa)(t̂b · ĥb)

hahb
W8.

(C.93)

(n̂a ·∇x)(n̂b ·∇x)(a ·∇x)(b ·∇x)[gS(R)− gC(R)] =

= −φa(x)φb(y)(n̂a · n̂b)(a ·∇x)(b ·∇x)[k
2
SgS(R)− k2CgC(R)]+

−
4(̂la · l̂b)

hahb
(a ·∇x)(b ·∇x)[gS(R)− gC(R)].

(C.94)

∫

TaTb

dSxdSyφa(x)φb(y)(a ·∇R)(b ·∇R)[k
2
SgS(R)− k2CgC(R)] =

= anbn(n̂a · n̂b)W11 +
2an(bt · ĥb)

ha
W12 +

2bn(at · ĥa)

hb
W13+

+
4[(a · ĥa)(b · ĥb)− anbn(̂la · l̂b)]

hahb
W14.

(C.95)

∫

TaTb

dSxdSy(a ·∇R)(b ·∇R)[gS(R)− gC(R)] =

= anbn(n̂a · n̂b)W14 + 2an(bt · ĥb)W15 + 2bn(at · ĥa)W16+

+ 4[(a · ĥa)(b · ĥb)− anbn(̂la · l̂b)]W17.

(C.96)
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Final expression for matrix element of Ŵ

∫

TaTb

dSxdSyφa(x)φb(y)(b · Ŵa) =

= −
λk2C
λ+ 2µ

W2+

+
2λµ

λ+ 2µ

{
−2k2CanbnW2 − 4

anbn
h2a

W3 − 4
anbn
h2b

W4 −
2anbt(t̂b · ĥb

hb
W5,−

2atbn(t̂a · ĥa

ha
W6

}
+

+ µ
{
[(a · b) + bn(n̂b · a) + an(n̂b · a) + anbn(n̂a · n̂b)](n̂a · n̂b)[−k

2
SW7 −

4ĥa · ĥb)

hahb
W8]+

+
−2[bt(n̂b · a) + anbt(n̂a · n̂b)](t̂b · ĥb)

hb
W9 −

2[at(n̂a · b) + atbn(n̂a · n̂b)](t̂a · ĥa)

ha
W10+

+
4atbt(n̂a · n̂b)(t̂a · ĥa)(t̂b · ĥb)

hahb
W8

}
+

−
4µ(n̂a · n̂b)

k2S

{
anbn(n̂a · n̂b)W11 +

2an(bt · ĥb)

ha
W12 +

2bn(at · ĥa)

hb
W13+

+
4[(a · ĥa)(b · ĥb)− anbn(̂la · l̂b)]

hahb
W14

}
+

−
4(̂la · l̂b)

hahb

{
anbn(n̂a · n̂b)W14+

+ 2an(bt · ĥb)W15 + 2bn(at · ĥa)W16 + 4[(a · ĥa)(b · ĥb)− anbn(̂la · l̂b)]W17

}
.

(C.97)
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where

W2 =

∫

TaTb

dSxdSyφa(x)φb(y)gC(R),

W3 =

∫

la

dla

∫

Tb

dSyφb(y)gC(R),

W4 =

∫

Ta

dSx

∫

lb

dlbφa(x)gC(R)+

W5 =

∫

TaTb

dSxdSyφa(x)(n̂b ·∇x)gC(R).

W6 =

∫

TaTb

dSxdSyφb(y)(n̂a ·∇x)gC(R),

W7 =

∫

TaTb

dSxdSyφa(x)φb(y)gS(R),

W8 =

∫

TaTb

dSxdSygS(R),

W9 =

∫

TaTb

dSxdSyφa(x)(n̂b ·∇x)gS(R),

W10 =

∫

TaTb

dSxdSyφb(y)(n̂a ·∇x)gS(R),

W11 =

∫

TaTb

dSxdSyφa(x)φb(y)[k
4
SgS(R)− k4CgC(R)],

W12 =

∫

TaTb

dSxdSyφa(x)(R̂ · n̂a)[k
2
Sg

′
S(R)− k2Cg

′
C(R)],

W13 =

∫

TaTb

dSxdSyφb(y)(R̂ · n̂b)[k
2
Sg

′
S(R)− k2Cg

′
C(R)],

W14 =

∫

TaTb

dSxdSy[k
2
SgS(R)− k2CgC(R)],

W15 =

∫

Ta

∫

lb

dSxdlb(R̂ · n̂a)[g
′
S(R)− g′C(R)],

W16 =

∫

la

∫

Tb

dladSy(R̂ · n̂b)[g
′
S(R)− k2Cg

′
C(R)],

W17 =

∫

lalb

dladlb[k
2
SgS(R)− k2CgC(R)].

(C.98)
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C.5.4 Behavior of the kernels near the Green function singularity R = 0

We note that the displacement Green functions Ĝ(R) and and the surface stress tensor Green
function Γ (r, r′) appearing in the surface integral equation exhibit an important property in
the limit R→ 0. Since the function

gS(R)− gC(R) =
1

4π

(
eikSR − 1

R
−

eikCR − 1

R

)
(C.99)

is regular for R → 0 (due to cancellation of the singularities in the two Green functions), the
second terms of the Green functions Ĝ(R) and n̂ ·Σ(r, r′) are also nonsingular, while, without
the cancellation, they would have contained a 1/R3 singularity. The reduced degree of singu-
larity is particularly important in the discretization of surface integral equations (Sec. C.4).
Specifically we have for small R

[gS(R)− gC(R)] →
1

4π
{i(kS − kC) +

1
2 [(ikS)

2 − (ikC)
2]R + ...}

as well as

(n̂ ·∇R)[gS(R)− gC(R)] = (n̂ · R̂)
1

4π

d

dR
[gS(R)− gC(R)] → −

1

8π
(n̂ · R̂)[(k2S − k2C) + ...]

are finite at R = 0 This fact facilitates discretization of the integral equations and computation
of the matrix elements.

116



References

[1] E. Bleszynski, M. Bleszynski, and T. Jaroszewicz, “Fast volumetric integral solver for
acoustic wave propagation through inhomogeneous media,” J. Acoust. Soc. Am., vol. 124,
pp. 396–408, 2008.

[2] ——, “Fast volumetric integral-equation solver for high-contrast acoustics,” J. Acoust.
Soc. Am., vol. 124, pp. 3684–3693, 2008.

[3] B. W. Lawton and M. R. Stinson, “Standing wave patterns in the human ear canal used for
estimation of acoustic energy reflectance at the eardrum,” The Journal of the Acoustical
Society of America, vol. 79, pp. 1003–1009, 1986.

[4] P. M. Morse and K. U. Ingard, Theoretical Acoustics. New York: McGraw-Hill, 1968.

[5] E. Bleszynski, M. Bleszynski, and T. Jaroszewicz, “AIM: Adaptive Integral Method for
solving large-scale electromagnetic scattering and radiation problems,” Radio Science,
vol. 31, pp. 1225–1251, 1996.

[6] M. J. Ackerman, “The Visible Human project,” J. Biocomm., vol. 18, 1991. [Online].
Available: http://www.nlm.nih.gov

[7] M. Bonnet, S. Chaillat, and J.-F. Semblat, “Multi-level fast multipole BEM for 3-D elas-
todynamics,” Recent advances in boundary element methods, pp. 15–27, 2009.

[8] P. G. Bergmann, “The wave equation in a medium with a variable index of refraction,”
J. Acoust. Soc. Am., vol. 17, pp. 329–333, 1946.

[9] P. A. Martin, “Acoustic scattering by inhomogeneous obstacles,” SIAM J. Appl. Math.,
vol. 64, pp. 297–308, 2003.

[10] D. Colton and R. Kress, Integral Equation Methods in Scattering Theory. John Wiley &
Sons, 1983.

[11] M. Costabel and E. P. Stephan, “Integral equations for transmission problems in linear
elasticity,” J. Integral Equations and Applications, vol. 2, pp. 211–222, 1990.

[12] R. Kittappa and R. E. Kleinman, “Acoustic scattering by penetrable homogeneous ob-
jects,” J. Math. Phys., vol. 16, pp. 421–432, 1975.

[13] M. Costabel and E. P. Stephan, “A direct boundary integral equation method for trans-
mission problems,” J. Math. Anal. Appl., vol. 106, pp. 367–413, 1985.

[14] R. E. Kleinman and P. A. Martin, “On single integral equations for the transmission
problem of acoustics,” SIAM J. Appl. Math., vol. 48, pp. 307–325, 1988.

[15] P. A. Martin, “Identification of irregular frequencies in simple direct integral-equation
methods for scattering by homogeneous inclusions,” Wave Motion, vol. 13, pp. 185–192,
1991.

117
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